MTH 434/534

HW #3

INNER PRODUCTS

1. Consider the inner product defined by

$$\vec{\boldsymbol{v}} \star \vec{\boldsymbol{w}} = \frac{1}{2} \left(v^x w^y + v^y w^x \right)$$

where $\vec{v} = v^x \hat{x} + v^y \hat{y}$ and $\vec{w} = w^x \hat{x} + w^y \hat{y}$ are ordinary vectors in \mathbb{R}^2 .

- (a) Compute $\vec{v} \star \vec{v}$.
- (b) Find a vector $\vec{u} \in \mathbb{R}^2$ such that $\vec{u} \star \vec{u} = 1$
- (c) Find a vector $\vec{v} \in \mathbb{R}^2$ such that $\vec{v} \star \vec{v} = -1$
- (d) How many independent vectors $\vec{w} \in \mathbb{R}^2$ are there satisfying $\vec{w} \star \vec{w} = 0$?
- 2. Now work in \mathbb{R}^3 , and suppose there is an inner product such that

$$\vec{\boldsymbol{v}} \star \vec{\boldsymbol{v}} = v^x v^y + v^y v^z + v^z v^x$$

for any vector $\vec{v} = v^x \hat{x} + v^y \hat{y} + v^z \hat{z}$ in \mathbb{R}^3 .

- (a) Determine $\vec{v} \star \vec{w}$.
- (b) Find a basis of \mathbb{R}^3 such that each basis vector \vec{u} satisfies either $\vec{u} \star \vec{u} = 1$ or $\vec{u} \star \vec{u} = -1$, and any two basis vectors \vec{u} , \vec{v} satisfy $\vec{u} \star \vec{v} = 0$.

EXTRA CREDIT:

Using the above results, or otherwise, rewrite xy as the sum or difference of exactly two squares, and xy + yz + zx as the sum or difference of exactly three squares.

HINT: Your previous answers should help.