You may wish to recall the following facts:

$$
\begin{aligned}
* * & =(-1)^{p(n-p)+s} \\
d^{2} & =0 \\
\beta \wedge \alpha & =(-1)^{p q} \alpha \wedge \beta \\
\alpha \wedge * \gamma & =g(\alpha, \gamma) \omega \\
d(\alpha \wedge \beta) & =d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta
\end{aligned}
$$

You may wish to use the following relationships in (Euclidean) \mathbb{R}^{3} :

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}=F \\
& \vec{\nabla} f \cdot d \overrightarrow{\boldsymbol{r}}=d f \\
&(\vec{\nabla} \times \overrightarrow{\boldsymbol{F}}) \cdot d \overrightarrow{\boldsymbol{r}}=* d F \\
& \vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}=* d * F \\
& \Delta f=\vec{\nabla} \cdot \vec{\nabla} f=* d * d f
\end{aligned}
$$

