1. HODGE DUAL IN MINKOWSKI SPACE

4-dimensional Minkowski space has an orthonormal, oriented basis of 1-forms given by

$$
\{d x, d y, d z, d t\}
$$

with $g(d t, d t)=-1, g(d x, d x)=g(d y, d y)=g(d z, d z)=1$, and all others zero. The "volume element" (choice of orientation) is given by $\omega=d x \wedge d y \wedge d z \wedge d t$.
(a) Determine the Hodge dual operator $*$ on all forms by computing its action on basis forms at each rank.
(b) How does your answer change if the opposite orientation is chosen, namely $\omega=d t \wedge d x \wedge d y \wedge d z ?$

2. SPHERICAL COORDINATES

Consider spherical coordinates in 3-dimensional Euclidean space with the usual orientation, namely $\omega=r^{2} \sin \theta d r \wedge d \theta \wedge d \phi$.
WARNING: These are "physics" conventions: θ is the angle from the north pole (colatitude), and ϕ is the angle in the $x y$-plane (longitude).
(a) Determine the Hodge dual operator $*$ on all forms (expressed in spherical coordinates) by computing its action on basis forms at each rank.
(b) Compute the dot and cross products of 2 arbitrary "vector fields" (really 1-forms) in spherical coordinates using the expressions:

$$
\begin{aligned}
\alpha \cdot \beta & =*(\alpha \wedge * \beta) \\
\alpha \times \beta & =*(\alpha \wedge \beta)
\end{aligned}
$$

You may express your results either with respect to an orthonormal basis or with respect to a "coordinate" (non-orthonormal) spherical basis; make sure you know which you're doing. ("Arbitrary" means you must give an answer valid for any 2 vectors.)

