MTH 434/534

HW #2

DECOMPOSABLE FORMS

Denote the *p*-forms in \mathbb{R}^n by $\bigwedge^p(\mathbb{R}^n)$. A typical 1-form in \mathbb{R}^2 would therefore take the form $F = F_x dx + F_y dy \in \bigwedge^1(\mathbb{R}^2)$.

A *p*-form $\beta \in \bigwedge^p(\mathbb{R}^n)$ is called *decomposable* if there exist 1-forms $\alpha_i \in \bigwedge^1(\mathbb{R}^n)$ with

 $\beta = \alpha_1 \wedge \dots \wedge \alpha_p$

1. Show that all elements of $\wedge^2(\mathbb{R}^3)$, that is, all 2-forms in \mathbb{R}^3 , are decomposable. In other words, show that

$$H = H_x \, dy \wedge dz + H_y \, dz \wedge dx + H_z \, dx \wedge dy$$

is decomposable.

HINT: Consider the previous assignment!

You may cite your solution to the previous assignment without proof, so long as an explicit reference is given ("see $HW \not\equiv 1$ "). If you do this, it wouldn't hurt to include a copy of your previous assignment.

2. Find an example of an *indecomposable* 2-form. HINT: Don't work in \mathbb{R}^3 ...

EXTRA CREDIT:

- Show that all 3-forms are decomposable in \mathbb{R}^4 .
- Can you argue that all elements of $\wedge^{n-1}(\mathbb{R}^n)$ are decomposable?