INTEGRATION ON THE SPHERE

- 1. Working in rectangular coordinates, choose a particular 1-form β in \mathbb{R}^3 .
- (a) Compute $\alpha = d\beta$. (If $\alpha = 0$, start over.)
- (b) Evaluate α on the unit sphere \mathbb{S}^2 , on which r=1.

 HINT: First express α in spherical coordinates. Use what you know!
- (c) Evaluate β on the unit sphere \mathbb{S}^2 .
- (d) Recompute $\alpha = d\beta$.
- (e) Did you get the same answer?

 The result of "evaluating" a differential form on a surface is called the **pullback** of the form to the surface. You have just investigated whether the operations of exterior differentiation (the d operator) and pullback commute.
- 2. Now consider the 2-form α you constructed above, evaluated on \mathbb{S}^2 .
- (a) Show that $\int_{\mathbb{S}^2} \alpha = 0$.
- (b) Try to repeat the above calculation without knowing explicitly what β is. You should actually compute the integral if possible. What coordinates should you use?
- (c) What does (the differential form version of) Stokes' Theorem say about the integral you just evaluated?
- 3. Consider now the volume element of the unit sphere.
- (a) The standard orientation on the unit sphere is $\omega = \sin \theta \, d\theta \wedge d\phi$. Determine $\int_{\mathbb{S}^2} \omega$.
- (b) It is easy to see that $\omega = d(-\cos\theta \, d\phi)$. Doesn't the previous problem imply that $\int_{\mathbb{S}^2} \omega = 0$? Explain.