$\rm MTH~434$

HW #1

DECOMPOSABLE FORMS

Let V be a vector space. A p-vector $\beta \in \bigwedge^p V$ is called *decomposable* if and only if there exist vectors $\alpha_i \in V$ with

$$\beta = \alpha_1 \wedge \dots \wedge \alpha_p$$

An example of an *indecomposable* 2-vector is $\alpha \wedge \beta + \gamma \wedge \delta$ where $\alpha, \beta, \gamma, \delta \in V$ are linearly independent (so that dim $V \geq 4$).

1. Let \vec{u} be an ordinary vector in \mathbb{R}^3 , so that

$$\vec{u} = A\,\hat{\imath} + B\,\hat{\jmath} + C\,\hat{k}$$

for some constants A, B, C. Find two vectors \vec{v} and \vec{w} such that

 $ec{u} = ec{v} imes ec{w}$

It is possible to solve this problem by brute force; find a better way if you can. HINT: What properties should \vec{v} and \vec{w} have?

2. Show that if dim V = 3 then all 2-vectors are decomposable. In other words, show that if $\{\rho, \sigma, \tau\}$ is a basis of V then

$$\gamma = A\,\sigma\wedge\tau + B\,\tau\wedge\rho + C\,\rho\wedge\sigma$$

is decomposable for any constants A, B, C. HINT: Adapt your answer to the previous problem!

EXTRA CREDIT:

- Show that if $\dim V = 4$ then all 3-vectors are decomposable.
- Can you argue that all (n-1)-vectors in dimension n are decomposable?