MTH 434/534

HW #6

1. VECTOR POTENTIALS

Consider the 2-form $\beta = 2yz \, dy \wedge dz + 2xz \, dz \wedge dx + 2xy \, dx \wedge dy$.

- (a) Is β closed, that is, does $d\beta = 0$?
- (b) Is β exact, that is, does there exist a 1-form α such that dα = β?
 If β is not exact, explain why. If β is exact, find the most general solution α.
- (c) What problem in vector calculus have you solved?

2. INTEGRATION ON THE SPHERE

(a) Choose a particular 1-form β in \mathbb{R}^3 . Compute $\alpha = d\beta$. Show that

$$\int_{\mathbb{S}^2} \alpha = 0$$

where \mathbb{S}^2 denotes the unit sphere.

- (b) Try to repeat the above calculation without knowing explicitly what β is. You should actually compute the integral if possible. What coordinates should you use?
- (c) The standard orientation on the unit sphere is $\omega = \sin \theta \, d\theta \wedge d\phi$. Determine $\int_{\mathbb{S}^2} \omega$.
- (d) It is easy to see that $\omega = d(-\cos\theta \, d\phi)$. Doesn't part (b) imply that $\int_{\mathbb{S}^2} \omega = 0$? Explain.