MTH 434/534

1. VECTOR POTENTIALS

Consider the 2-form $\beta=2 y z d y \wedge d z+2 x z d z \wedge d x+2 x y d x \wedge d y$.
(a) Is β closed, that is, does $d \beta=0$?
(b) Is β exact, that is, does there exist a 1-form α such that $d \alpha=\beta$? If β is not exact, explain why. If β is exact, find the most general solution α.
(c) What problem in vector calculus have you solved?

2. INTEGRATION ON THE SPHERE

(a) Choose a particular 1-form β in \mathbb{R}^{3}. Compute $\alpha=d \beta$. Show that

$$
\int_{\mathbb{S}^{2}} \alpha=0
$$

where \mathbb{S}^{2} denotes the unit sphere.
(b) Try to repeat the above calculation without knowing explicitly what β is. You should actually compute the integral if possible. What coordinates should you use?
(c) The standard orientation on the unit sphere is $\omega=\sin \theta d \theta \wedge d \phi$. Determine $\int_{\mathbb{S}^{2}} \omega$.
(d) It is easy to see that $\omega=d(-\cos \theta d \phi)$. Doesn't part (b) imply that $\int_{\mathbb{S}^{2}} \omega=0$? Explain.

