$\rm MTH~434$

HW #2

INNER PRODUCTS

1. Let $\vec{v} = v^1 \hat{i} + v^2 \hat{j}$ and $\vec{w} = w^1 \hat{i} + w^2 \hat{j}$ be ordinary vectors in \mathbb{R}^2 . Consider the inner product defined by

$$\vec{\boldsymbol{v}} \star \vec{\boldsymbol{w}} = \frac{1}{2} \left(v^1 w^2 + v^2 w^1 \right)$$

- (a) Compute $\vec{v} \star \vec{v}$. If you only knew this (for all \vec{v}), could you computer $\vec{v} \star \vec{w}$?
- (b) Find a vector $\vec{x} \in \mathbb{R}^2$ such that $\vec{x} \star \vec{x} = 1$
- (c) Find a vector $\vec{y} \in \mathbb{R}^2$ such that $\vec{y} \star \vec{y} = -1$
- (d) How many independent vectors $\vec{z} \in \mathbb{R}^2$ are there satisfying $\vec{z} \star \vec{z} = 0$?
- 2. Now work in \mathbb{R}^3 , and suppose there is an inner product such that

$$\vec{\boldsymbol{v}} \star \vec{\boldsymbol{v}} = v^1 v^2 + v^2 v^3 + v^3 v^1$$

- (a) Determine $\vec{v} \star \vec{w}$.
- (b) Find a basis of \mathbb{R}^3 such that each basis vector \vec{u} satisfies either $\vec{u} \star \vec{u} = 1$ or $\vec{u} \star \vec{u} = -1$, and any two basis vectors \vec{u} , \vec{v} satisfy $\vec{u} \star \vec{v} = 0$.

EXTRA CREDIT:

Using the above results, or otherwise, rewrite xy as the sum or difference of exactly two squares, and xy + yz + zx as the sum or difference of exactly three squares. HINT: Your previous answers should help.