DECOMPOSABLE FORMS

Let V be a vector space. A p-vector $\beta \in \Lambda^{p} V$ is called decomposable if and only if there exist vectors $\alpha_{i} \in V$ with

$$
\beta=\alpha_{1} \wedge \ldots \wedge \alpha_{p}
$$

An example of an indecomposable 2-vector is $\alpha \wedge \beta+\gamma \wedge \delta$ where $\alpha, \beta, \gamma, \delta \in V$ are linearly independent (so that $\operatorname{dim} V \geq 4$).

1. Let $\overrightarrow{\boldsymbol{u}}$ be an ordinary vector in \mathbb{R}^{3}, so that

$$
\overrightarrow{\boldsymbol{u}}=A \hat{\boldsymbol{\imath}}+B \hat{\boldsymbol{\jmath}}+C \hat{\boldsymbol{k}}
$$

for some constants A, B, C. Find two vectors $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ such that

$$
\overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}}
$$

It is possible to solve this problem by brute force; find a better way if you can.
HINT: What properties should $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$ have?
2. Show that if $\operatorname{dim} V=3$ then all 2 -vectors are decomposable. In other words, show that if $\{\rho, \sigma, \tau\}$ is a basis of V then

$$
\gamma=A \sigma \wedge \tau+B \tau \wedge \rho+C \rho \wedge \sigma
$$

is decomposable for any constants A, B, C.
HINT: Adapt your answer to the previous problem!
EXTRA CREDIT:

- Show that if $\operatorname{dim} V=4$ then all 3 -vectors are decomposable.
- Can you argue that all $(n-1)$-vectors in dimension n are decomposable?

