MTH 434

HW #6

1. VECTOR POTENTIALS

Consider the 2-form $\beta = 2yz \, dy \wedge dz + 2xz \, dz \wedge dx + 2xy \, dx \wedge dy$.

- (a) Is β closed, that is, does $d\beta = 0$?
- (b) Is β exact, that is, does there exist a 1-form α such that $d\alpha = \beta$? If β is not exact, explain why. If β is exact, find the most general solution α .
- (c) What problem in vector calculus have you solved?