

MTH 420 – HW #4

Due on Monday, 1 March 1999

1. DIFFERENTIAL EQUATIONS

Consider the following system of differential equations:

$$\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z} = P \quad \frac{\partial f}{\partial z} - \frac{\partial h}{\partial x} = Q \quad \frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} = R$$

where f, g, h are functions of the variables x, y, z .

- (a) What condition must be imposed on P, Q, R for there to exist solutions f, g, h ?
- (b) Suppose that $P = 2yz, Q = 2xz, R = 2xy$. Find a solution f, g, h .
- (c) With P, Q, R as above, find the *general* solution f, g, h .

HINT: Express the problem in terms of differential forms, that is, combine f, g, h into a differential form of appropriate rank, and do the same for P, Q, R .

2. INTEGRATION ON THE SPHERE

- (a) Let β be any 1-form in \mathbb{R}^3 , and let $\alpha = d\beta$. Show by actually doing the integration that

$$\int_{\mathbb{S}^2} \alpha = 0$$

where \mathbb{S}^2 denotes the unit sphere.

If you are unable to do this for a generic β , at least work out an explicit example.

- (b) The volume element on the unit sphere is $\omega = \sin \theta d\theta \wedge d\phi$ and clearly $\omega = d(-\cos \theta d\phi)$. Why doesn't the integral above imply that the “volume” (really surface area) of the sphere must be zero, that is, why isn't $\int_{\mathbb{S}^2} \omega$ equal to 0?

*HINT: This is trickier than it looks! It would make sense to work in spherical coordinates. Furthermore, since $r = 1$ on the sphere, we also have $dr = 0$ when doing the integration. Thus, it is safe to assume that the “ dr ” term in β vanishes, and further that the remaining coefficients do not depend on r . In short, you are assuming that β is a 1-form **on the sphere**.*

HOWEVER: Care must be taken that β is well-defined! In particular, “ $d\theta$ ” is not well-defined at the poles (the limit is direction-dependent), and “ $d\phi$ ” actually blows up at the poles! For a rigorous solution, you would have to verify that your choice of β is well-defined at the poles, and the easiest way to do this is to write it in rectangular coordinates.

SHORTCUT: It turns out, however, that $\sin \theta d\phi$ is no worse than $d\theta$. (You are encouraged to verify this by expressing them in a rectangular basis; see me for help.) Furthermore, this behavior is in fact sufficient to do the integral. It is thus sufficient to use this **orthonormal** basis on the unit sphere when defining β , and not worry further about rigor.