

MTH 420 – HW #1

Due on Friday, 15 January 1999

DECOMPOSABLE FORMS

A p -vector $\beta \in \Lambda^p V$ is called *decomposable* if and only if there exist vectors $\alpha^i \in V$ with

$$\beta = \alpha^1 \wedge \dots \wedge \alpha^p.$$

An example of an *indecomposable* 2-vector is $\alpha \wedge \beta + \gamma \wedge \delta$ where $\alpha, \beta, \gamma, \delta \in V$ are linearly independent (so that $\dim V \geq 4$).

1. Let \vec{u} be a vector in \mathbb{R}^3 , so that

$$\vec{u} = A \vec{i} + B \vec{j} + C \vec{k}$$

Find 2 vectors \vec{v} and \vec{w} such that

$$\vec{u} = \vec{v} \times \vec{w}$$

HINT: What properties should \vec{v} and \vec{w} have?

*Start by setting one coefficient to 0, then try the general case.
Don't forget that all squares are 0!*

2. Show that if $\dim V = 3$ then all 2-vectors are decomposable, in other words, show that if $\{\rho, \sigma, \tau\}$ is a basis of V then

$$\gamma = A \sigma \wedge \tau + B \tau \wedge \rho + C \rho \wedge \sigma$$

is decomposable.

HINT: Adapt your answer to the previous problem!

*Start by setting one coefficient to 0, then try the general case.
Don't forget that all squares are 0!*

(You can also solve this problem by brute force, but it's not very illuminating.)

3. Show that if $\dim V = 4$ then all 3-vectors are decomposable.

EXTRA CREDIT: Discuss the case of $(n-1)$ -vectors in dimension n .

(This does not require an explicit proof.)