Exploring Spherical Area

1. GETTING STARTED

This activity can be done using any model of elliptic geometry. A Lénárt Sphere is ideal, but any roughly spherical object you can write on will do fine.

If you don't have access to a sphere you can write on, you can use the Klein disk GeoGebra applet to model spherical geometry, by carefully considering points inside the disk, representing the Northern Hemisphere and points outside the disk, representing the Southern Hemisphere.

You can also perform this construction in the Klein disk model of single elliptic geometry by working exclusively inside the disk. However, you will need to reinterpret several steps and concepts.

2. SPHERICAL GEOMETRY

- Choose a point on the sphere. Construct its antipodal point. Connect your two points with two (non-collinear) line segments.
This shape is called a lune.
The angle of a lune is the smaller of the two angles between the two line segments.
- What is the area of a sphere of radius r ?
- What is the area of a lune with angle α ?

3. TRIANGLES

- Construct a triangle, each of whose angles is less than π.
- From each vertex, extend the sides of the triangle to make a lune.
- Extend the sides of each lune to lines rather than line segments, thus constructing another lune on the other side of the sphere.
- You should now have a total of 6 lunes. What is their combined area?
- How much of the sphere do your lunes cover?
- Derive a formula for the area of your triangle in terms of its angles.

