1. Sketch each of the vector fields below
(a) $\overrightarrow{\boldsymbol{G}}=x \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}$
(b) $\overrightarrow{\boldsymbol{H}}=y \hat{\boldsymbol{x}}-x \hat{\boldsymbol{y}}$
(c) $\overrightarrow{\boldsymbol{F}}=y \hat{\boldsymbol{x}}+x \hat{\boldsymbol{y}}$
2. Consider the vector field $\overrightarrow{\boldsymbol{F}}$ shown at the right. Which of the following formulas best fits $\overrightarrow{\boldsymbol{F}}$? Why?
(a) $\overrightarrow{\boldsymbol{F}}_{1}=\frac{x}{x^{2}+y^{2}} \hat{\boldsymbol{x}}+\frac{y}{x^{2}+y^{2}} \hat{\boldsymbol{y}}$
(b) $\overrightarrow{\boldsymbol{F}}_{2}=-y \hat{\boldsymbol{x}}+x \hat{\boldsymbol{y}}$
(c) $\overrightarrow{\boldsymbol{F}}_{3}=\frac{-y}{\left(x^{2}+y^{2}\right)^{2}} \hat{\boldsymbol{x}}+\frac{x}{\left(x^{2}+y^{2}\right)^{2}} \hat{\boldsymbol{y}}$

3. For each of the vector fields below, explain whether you expect the given vector field to have positive, negative, or zero circulation counterclockwise around the closed curve C in the figure shown at the right. Two of the segments of C are circular arcs centered at the origin; the other two are radial line segments. You may find it helpful to sketch the vector field.
(a) $\overrightarrow{\boldsymbol{G}}=x \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}$
(b) $\overrightarrow{\boldsymbol{H}}=y \hat{\boldsymbol{x}}-x \hat{\boldsymbol{y}}$

