

- 1. Sketch each of the vector fields below
- (a) $\vec{G} = x \hat{\imath} + y \hat{\jmath}$
- (b) $\vec{\boldsymbol{H}} = y\,\hat{\boldsymbol{\imath}} x\,\hat{\boldsymbol{\jmath}}$
- (c) $\vec{F} = y \hat{\imath} + x \hat{\jmath}$
- 2. Consider the vector field \vec{F} shown at the right. Which of the following formulas best fits \vec{F} ?

(a)
$$\vec{F}_1 = \frac{x}{x^2 + y^2} \hat{\imath} + \frac{y}{x^2 + y^2} \hat{\jmath}$$

- (b) $\vec{F}_2 = -y\,\hat{\imath} + x\,\hat{\jmath}$
- (c) $\vec{F}_3 = \frac{-y}{(x^2 + y^2)^2} \hat{\imath} + \frac{x}{(x^2 + y^2)^2} \hat{\jmath}$

- 3. For each of the problems below, say whether you expect the given vector field to have positive, negative, or zero circulation counterclockwise around the closed curve C in the figure shown at the right. Two of the segments of C are circular arcs centered at the origin; the other two are radial line segments. You may find it helpful to sketch the vector field.
 - (a) $\vec{\boldsymbol{G}} = x\,\hat{\boldsymbol{\imath}} + y\,\hat{\boldsymbol{\jmath}}$
 - (b) $\vec{\boldsymbol{H}} = y\,\hat{\boldsymbol{\imath}} x\,\hat{\boldsymbol{\jmath}}$

