1. For each of the problems below, say whether you expect the given vector field to have positive, negative, or zero circulation counterclockwise around the closed curve C in the figure shown at the right. Two of the segments of C are circular arcs centered at the origin; the other two are radial line segments. You may find it helpful to sketch the vector field.
(a) $\overrightarrow{\boldsymbol{G}}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}$
(b) $\overrightarrow{\boldsymbol{H}}=y \hat{\boldsymbol{\imath}}-x \hat{\boldsymbol{\jmath}}$
2. Consider the vector field $\overrightarrow{\boldsymbol{F}}$ shown at the right, and the loop C, which is to be traversed in the counterclockwise direction.
(a) Is $\oint_{C} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ positive, negative, or zero?
(b) From your answer to part (a), can you determine whether or not $\overrightarrow{\boldsymbol{F}}=\vec{\nabla} f$ for some function $f ?$

3.

(a) For each vector field $\overrightarrow{\boldsymbol{F}}$ shown below, sketch a curve for which the integral $\int_{C} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ is positive.
(b) For which of these vector fields is it possible to choose your curve to be closed?

$\leftarrow \leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow$
$\leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow$
$\leftarrow \leftarrow+$	$\rightarrow \rightarrow \longrightarrow$
$\longleftarrow \leftarrow$	$\rightarrow \rightarrow \longrightarrow$
\leftarrow	$\xrightarrow{\rightarrow} \rightarrow$ 仡
$\leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow$
$\longleftarrow \leftarrow \leftarrow$	$\rightarrow \rightarrow \rightarrow$

