HW #3

1. For each of the problems below, say whether you expect the given vector field to have positive, negative, or zero circulation *counterclockwise* around the closed curve C in the figure shown at the right. Two of the segments of C are circular arcs centered at the origin; the other two are radial line segments. You may find it helpful to sketch the vector field.

(a)
$$\vec{\boldsymbol{G}} = x\,\hat{\boldsymbol{\imath}} + y\,\hat{\boldsymbol{\jmath}}$$

(b)
$$\vec{H} = y \hat{\imath} - x \hat{\jmath}$$

- 2. Consider the vector field \vec{F} shown at the right, and the loop C, which is to be traversed in the *counterclockwise* direction.
- (a) Is $\oint_C \vec{F} \cdot d\vec{r}$ positive, negative, or zero?
- (b) Which of the following formulas best fits \vec{F} ?

$$egin{aligned} ec{F_1} &= rac{x}{x^2+y^2}\, \hat{m{\imath}} + rac{y}{x^2+y^2}\, \hat{m{\jmath}} \ ec{F_2} &= -y\, \hat{m{\imath}} + x\, \hat{m{\jmath}} \ ec{F_3} &= rac{-y}{(x^2+y^2)^2}\, \hat{m{\imath}} + rac{x}{(x^2+y^2)^2}\, \hat{m{\jmath}} \end{aligned}$$

3.

- (a) For each vector field \vec{F} shown below, sketch a curve for which the integral $\int_C \vec{F} \cdot d\vec{r}$ is positive.
- (b) For which of these vector fields is it possible to choose your curve to be closed?

KKKKKKKKKK	
KKKKKKKKK	
6666444	
1111111	
÷ † † † † † † † † † † †	
X X Y Y Y	
X X X X X X X	

t	t	Î	Î		7	Ť	Ť	Į	1	
t	1	Î	Î	1	7	ŕ	ţ	ļ	1	ø
t	t	Î	Î	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathbf{\hat{x}}$	¥	ŧ	4	4	4
t	t	Î	Î		~	`	4	1	~	4
t	Ť	Î	Î	→ →		-		÷	+	4
t	t	Î	1	-> _>	^	/	t	`	•	۷
t	t	Ť	1	~ ~	1	1	t	۲	۲	
t	t	Ť	4	~ ^	1	1	1	٢	٢	8
t	t	ŕ	4	1 1	1	1	Î	1	٢	5

EXTRA CREDIT:

From your answer to part (a) of problem 2, can you determine whether or not $\vec{F} = \vec{\nabla} f$ for some function f?