1. Suppose $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}=x y z^{2}$.
(a) Find $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$ at the point $(1,2,1)$.

Note: You are given $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$, not $\overrightarrow{\boldsymbol{F}}$!
(b) Using your answer to part (a), but no other information about the vector field $\overrightarrow{\boldsymbol{F}}$, estimate the flux out of a small box of side 0.2 centered at the point $(1,2,1)$ and with edges parallel to the axes.
(c) Without computing the vector field $\overrightarrow{\boldsymbol{F}}$, calculate the exact flux out of the box.
2. A smooth vector field $\overrightarrow{\boldsymbol{G}}$ satisfies

$$
\left.(\vec{\nabla} \times \overrightarrow{\boldsymbol{G}})\right|_{(0,0,0)}=2 \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+5 \hat{\boldsymbol{k}}
$$

Estimate the circulation $\oint \overrightarrow{\boldsymbol{G}} \cdot d \overrightarrow{\boldsymbol{r}}$ around a circle of radius 0.01 centered at the origin in each of the following planes:
(a) $x y$-plane, oriented counterclockwise when viewed from the positive z-axis.
(b) $y z$-plane, oriented counterclockwise when viewed from the positive x-axis.
(c) $x z$-plane, oriented counterclockwise when viewed from the positive y-axis.

