- 1. Suppose $\vec{\nabla} \cdot \vec{F} = xyz^2$.
- (a) Find $\vec{\nabla} \cdot \vec{F}$ at the point (1, 2, 1). Note: You are given $\vec{\nabla} \cdot \vec{F}$, not \vec{F} !
- (b) Using your answer to part (a), but no other information about the vector field \vec{F} , estimate the flux out of a small box of side 0.2 centered at the point (1,2,1) and with edges parallel to the axes.
- (c) Without computing the vector field \vec{F} , calculate the exact flux out of the box.
- 2. A smooth vector field \vec{G} satisfies

$$\left(\vec{\nabla} \times \vec{\boldsymbol{G}}\right)\Big|_{(0,0,0)} = 2\,\hat{\boldsymbol{\imath}} - 3\,\hat{\boldsymbol{\jmath}} + 5\,\hat{\boldsymbol{k}}$$

Estimate the circulation $\oint \vec{G} \cdot d\vec{r}$ around a circle of radius 0.01 centered at the origin in each of the following planes:

- (a) xy-plane, oriented counterclockwise when viewed from the positive z-axis.
- (b) yz-plane, oriented counterclockwise when viewed from the positive x-axis.
- (c) xz-plane, oriented counterclockwise when viewed from the positive y-axis.