[Note: $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$ is another notation for $\operatorname{div}(\overrightarrow{\boldsymbol{F}})$.]

1. Suppose $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}=x y z^{2}$.
(a) Find $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$ at the point $(1,2,1)$.

Note: You are given $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$, not $\overrightarrow{\boldsymbol{F}}$!
(b) Using your answer to part (a), but no other information about the vector field $\overrightarrow{\boldsymbol{F}}$, estimate the flux out of a small box of side 0.2 centered at the point $(1,2,1)$ and with edges parallel to the axes.
(c) Without computing the vector field $\overrightarrow{\boldsymbol{F}}$, calculate the exact flux out of the box.

