DIFFERENTIALS

1. The voltage V (in volts) across a circuit is given by Ohm's law: $V=I R$, where I is the current (in amps) flowing through the circuit and R is the resistance (in ohms). If we place two circuits, with resistance R_{1} and R_{2}, in parallel, then their combined resistance R is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Suppose the current is 2 amps and increasing at $10^{-2} \mathrm{amp} / \mathrm{sec}$ and R_{1} is 3 ohms and increasing at $0.5 \mathrm{ohm} / \mathrm{sec}$, while R_{2} is 5 ohms and decreasing at $0.1 \mathrm{ohm} / \mathrm{sec}$. Calculate the rate at which the voltage is changing.
SUGGESTION: Use differentials!

