1. Let S be the part of the paraboloid $2 x^{2}+2 y^{2}+z=50$ which lies above the $x y$-plane. Assume x, y, and z are measured in millimeters. Suppose S is coated with chocolate, and that the density of chocolate is $\sigma=x^{2}+y^{2}$ milligrams per square millimeter. How much total chocolate is there?
2. Suppose $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}=x y z^{2}$.
(a) Find $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$ at the point $(1,2,1)$.

Note: You are given $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{F}}$, not $\overrightarrow{\boldsymbol{F}}$!
(b) Using your answer to part (a), but no other information about the vector field $\overrightarrow{\boldsymbol{F}}$, estimate the flux out of a small box of side 0.2 centered at the point $(1,2,1)$ and with edges parallel to the axes.
(c) Without computing the vector field $\overrightarrow{\boldsymbol{F}}$, calculate the exact flux out of the box.

