1. Consider a valley whose height h in meters is given by $h=\frac{x^{2}}{10}+\frac{y^{2}}{10}$, with x and y (and 10!) in meters. Suppose you are hiking through this valley on a trail given by

$$
x=3 t \quad y=2 t^{2}
$$

with t in seconds (and where " 3 " and " 2 " have appropriate units).
(a) How fast are you climbing (rate of change of h) per meter along the trail when $t=1$?

You may find it helpful to recall that $d s=|d \overrightarrow{\boldsymbol{r}}|$.
(b) How fast are you climbing per second when $t=1$.
2.
(a) For each vector field $\overrightarrow{\boldsymbol{F}}$ shown below, sketch a curve for which the integral $\int_{C} \overrightarrow{\boldsymbol{F}} \cdot d \overrightarrow{\boldsymbol{r}}$ is positive.
(b) For which of these vector fields is it possible to choose your curve to be closed?

\leftarrow.	\cdots
\leftarrow	$\rightarrow \rightarrow$ -
\leftarrow	$\rightarrow \rightarrow$
-	$\xrightarrow{-}$
\ldots	$\rightarrow \rightarrow$
¢¢	$\xrightarrow{\rightarrow \rightarrow}$

