

Skills check (not to turn in):

§16.8: 3, 5, 13

Assigned:

1. Water in a bathtub has velocity vector field near the drain given, for x, y, z in cm, by

$$\vec{F} = -\frac{y+xz}{(z^2+1)^2} \hat{i} - \frac{yz-x}{(z^2+1)^2} \hat{j} - \frac{1}{z^2+1} \hat{k}$$

- (a) Rewriting \vec{F} as follows, describe in words how the water is moving:

$$\vec{F} = \frac{-y \hat{i} + x \hat{j}}{(z^2+1)^2} + \frac{-z(x \hat{i} + y \hat{j})}{(z^2+1)^2} - \frac{1}{z^2+1} \hat{k}$$

- (b) The drain in the bathtub is a disk in the xy -plane with center at the origin and radius 1 cm. Find the rate at which the water is leaving the bathtub. (That is, find the rate at which water is flowing through the disk.) Give units for your answer.

- (c) Find the divergence of \vec{F} .

- (d) Find the flux of the water through the hemisphere of radius 1, centered at the origin, lying below the xy -plane and oriented downward.

- (e) Find $\int_C \vec{G} \cdot d\vec{r}$ where C is the edge of the drain, orientated clockwise when viewed from above, and where

$$\vec{G} = \frac{1}{2} \left(\frac{y \hat{i} - x \hat{j}}{z^2+1} - \frac{x^2+y^2}{(z^2+1)^2} \hat{k} \right)$$

- (f) Calculate the curl of \vec{G} .

- (g) Explain why your answer to parts (d) and (e) are equal.