HW #8

1. Decide whether the vector fields below have a nonzero curl at the center of the region shown. In each case, the vector field is shown in the xy-plane; assume it has no z-component and is independent of z.

				X X X
	t	1	~	A A A
	1	^	-*	$\rightarrow \rightarrow \rightarrow \rightarrow$
	÷	•	1	
	Ļ	7	` *	
	ţ	7	\mathbf{a}	

2. A smooth vector field \vec{G} satisfies

$$\left(\vec{\nabla} \times \vec{\boldsymbol{G}}\right)\Big|_{(0,0,0)} = 2\,\hat{\boldsymbol{\imath}} - 3\,\hat{\boldsymbol{\jmath}} + 5\,\hat{\boldsymbol{k}}$$

Estimate the circulation $\oint \vec{G} \cdot d\vec{r}$ around a circle of radius 0.01 centered at the origin in each of the following planes:

- (a) xy-plane, oriented counterclockwise when viewed from the positive z-axis.
- (b) yz-plane, oriented counterclockwise when viewed from the positive x-axis.
- (c) xz-plane, oriented counterclockwise when viewed from the positive y-axis.

MTH 255