

MTH 255 Final Review

1. Each part of this problem concerns the parametric curve $\vec{r}(t) = (t^2 - 2)\vec{i} + (2t - 1)\vec{j} + \ln(t)\vec{k}$, $t > 0$.
 - (a) Find the velocity, \vec{v} , the speed, ν , and the acceleration, \vec{a} , at every $t > 0$.
 - (b) Find the length of the parametric curve from $(-1, 1, 0)$ to $(7, 5, \ln(3))$.
 - (c) Find the unit tangent vector \vec{T} and the tangential component of acceleration, a_T , at the point $(-1, 1, 0)$, that is, when $t = 1$.
 - (d) Find the curvature κ , normal component of acceleration, a_N , and the principle unit normal vector \vec{N} at $(-1, 1, 0)$, that is when $t = 1$.
2. In this problem the function f is given by $f(x, y, z) = x^3y - 3x^2yz^4$.
 - (a) Compute $\nabla f(x, y, z)$ and find the directional derivative of f at the point $(1, 1, 1)$ in the direction towards the origin.
 - (b) In what direction does f increase most rapidly at the point $(1, 1, 1)$ and what is the rate of increase of f in that direction?
 - (c) Consider the level surface $f(x, y, z) = -2$, where f is as above. Find an equation of the tangent plane and of the normal line to this surface at the point $(1, 1, 1)$.
3. In this problem $f(x, y) = 3xy - x^2y - xy^2$.
 - (a) Find all critical points of f and determine whether f has a local maximum, local minimum, or a saddle point at each critical point. (There are 4 distinct critical points.)
 - (b) Find the maximum and minimum values of the function $f(x, y)$ on (and inside) the triangle with vertices at $(0, 0)$, $(3, 0)$, and $(3, 6)$.
4. In this problem, the vector field \vec{F} is given by $\vec{F} = (2xz + \sin(y))\vec{i} + x \cos(y)\vec{j} + x^2\vec{k}$.
 - (a) Show that \vec{F} is conservative.
 - (b) Compute the line integral $\int_C \vec{F} \cdot \vec{T} ds$ where C is the curve $\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + t\vec{k}$, with $0 \leq t \leq \pi/2$.
5. In this problem \vec{F} is the vector field in the plane given by $\vec{F}(x, y) = \frac{x}{x^2 + y^2}\vec{i} + \frac{y}{x^2 + y^2}\vec{j}$.
 - (a) Compute $\operatorname{div} F$.

(b) Compute $\int_C \vec{F} \cdot \vec{n} ds$ for each of the three curves: $C_1 = \{(x, y) : x^2 + y^2 = 4\}$, $C_2 = \{(x, y) : (x - 1)^2 + (y - 1)^2 = 1\}$, and $C_3 = \{(x, y) : x^2 + y^2/2 = 1\}$. All curves are oriented counterclockwise.

6. A surface S in the shape of a helicoid is given by the parametric equations

$$\vec{r}(u, v) = u \cos(v) \vec{i} + u \sin(v) \vec{j} + v \vec{k}, \quad 0 \leq u \leq 1, \quad 0 \leq v \leq 2\pi.$$

Suppose that the density of the surface at the point (x, y, z) is given by $\rho(x, y, z) = [1 + x^2 + y^2]^{1/2}$. Find the total mass of the surface, that is, compute the surface integral $\iint_S \rho(x, y, z) dS$.

7. Let $\vec{F} = xy \vec{i} + yz \vec{j} + zx \vec{k}$ and let P be the triangular region in space with vertices $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. Let C be the boundary of P with the positive orientation being counterclockwise as viewed from above. Compute the line integral $\int_C \vec{F} \cdot d\vec{r}$.

8. Let $\vec{F} = x^2 \vec{i} + xy \vec{j} + z \vec{k}$ and let E be the three dimensional solid region that lies above the paraboloid $z = x^2 + y^2$ and below the plane $z = 4$. Let S be the boundary of E . Compute the total flux of the vector field \vec{F} out of E across the surface S .