1. The voltage V (in volts) across a circuit is given by $V=I R$ (Ohm's Law), where I is the current (in amps) flowing through the circuit and R is the resistance (in ohms). If we place two circuits, with resistance R_{1} and R_{2}, in parallel, then their combined resistance R is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Suppose the current is 2 amps and increasing at $10^{-2} \mathrm{amp} / \mathrm{sec}$ and R_{1} is 3 ohms and increasing at $0.5 \mathrm{ohm} / \mathrm{sec}$, while R_{2} is 5 ohms and decreasing at $0.1 \mathrm{ohm} / \mathrm{sec}$. Calculate the rate at which the voltage is changing.
2. The temperature of a gas in ${ }^{\circ} F$ is given by $T=x^{2}-5 x y+y^{2} z$, with x, y, z in feet.
(a) What is the rate of change in the temperature at the point $(1,2,3)$ in the direction of $\overrightarrow{\boldsymbol{v}}=2 \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}-2 \hat{\boldsymbol{k}} ?$
(b) What is the direction of maximum rate of change of temperature at the point $(1,2,3)$?
(c) What is the maximum rate of change of temperature at the point $(1,2,3)$?

