

- 1. The figure above shows the temperature T at a position x feet from the corner of the room, t hours after the heater is turned on.
- (a) Estimate $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial t}$ 20 hours after the heater is turned on, at a point 15 feet from the corner of the room.
- (b) Estimate $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial t}$ 15 hours after the heater is turned on, at a point 11 feet from the corner of the room.
- 2. A one-meter long metal bar is heated unevenly, with temperature in $^{\circ}C$ at a distance x meters from one end at time t given by

$$H(x,t) = 100e^{-0.1t}\sin(\pi x)$$

- (a) Calculate $\frac{\partial H}{\partial x}\Big|_{x=0.2}$ and $\frac{\partial H}{\partial x}\Big|_{x=0.8}$. What are these expressions a function of? What is the practical interpretation (in terms of temperature) of these two partial derivatives? Explain why each one has the sign it does.
- (b) Calculate $\frac{\partial H}{\partial t}$. What is its sign? What is its interpretation in terms of temperature?