1. An object moving with constant velocity passes through the point $(1,1,1)$, then through the point $(2,-1,3)$ five seconds later. What is its velocity vector? What is its acceleration vector?
2. Suppose $\overrightarrow{\boldsymbol{r}}(t)=3 \cos (t) \hat{\boldsymbol{\imath}}+3 \sin (t) \hat{\boldsymbol{\jmath}}+4 t \hat{\boldsymbol{k}}$ represents the position of a particle on a helix after t seconds, where z is the height of the particle above the ground in meters.
(a) Is the particle ever moving downwards? If so, when?
(b) When does the particle reach a point 12 meters above the ground?
(c) What is the velocity of the particle when it is 12 meters above the ground? What is its speed?
(d) When it is 12 meters above the ground, the particle leaves the helix and moves along the tangent line to the helix. Find a parametric equation for this tangent line.
