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Abstract. While Dynkin diagrams are useful for classifying Lie algebras, it is the root and
weight diagrams that are most often used in applications, such as when describing the properties
of fundamental particles. This paper illustrates how to construct root and weight diagrams from
Dynkin diagrams, and how the root and weight diagrams can be used to identify subalgebras.
In particular, we show how this can be done for some algebras whose root and weight diagrams
have dimension greater than 3, including the exceptional Lie algebras F4 and E6.

1. Introduction

Lie algebras are classified using Dynkin diagrams, which encode the geometric structure of root
and weight diagrams associated with an algebra. This paper begins with an introduction to Lie
algebras, roots, and Dynkin diagrams. We then show how Dynkin diagrams define an algebra’s
root and weight diagrams, and provide examples showing this construction. In Section 3, we
develop two methods to analyze subdiagrams. We then apply these methods to the exceptional
Lie algebra F4, and describe the slight modifications needed in order to apply them to E6. We
conclude by listing all Lie subalgebras of E6.

2. Root and Weight Diagrams of Lie Algebras

We summarize here some basic properties of root and weight diagrams. Further information
can be found in [1], [2], and [3]. A description of how root and weight diagrams are applied to
particle physics is also given in [2].

2.1. Lie Algebras. A Lie algebra g of dimension n is an n-dimensional vector space along with
a product [ , ]:g× g → g, called a commutator, which is anti-commutative ([x, y] = −[y, x]) and
satisfies the Jacobi Identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g. A Lie algebra is called simple if it is non-abelian and contains no non-trivial
ideals. All complex semi-simple Lie algebras are the direct sum of simple Lie algebras. Thus,
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2 A. WANGBERG AND T. DRAY

we follow the standard practice of studying the simple algebras, which are the building blocks
of the semi-simple algebras.

There are four infinite families of Lie algebras as well as five exceptional Lie algebras. The
(compact, real forms of) the algebras in the four infinite families correspond to special unitary
matrices (or their generalizations) over different division algebras. The algebras Bn and Dn

correspond in this way to real special orthogonal groups in odd and even dimensions, SO(2n+1)
and SO(2n), respectively. The algebras An correspond to complex special unitary groups SU(n+
1), and the algebras Cn correspond to unitary groups SU(n, H) over the quaternions, which are
more usually described as (some of the) symplectic groups.

While Lie algebras are usually classified using their complex representations, there are par-
ticular real representations, based upon the division algebras, which are of interest in parti-
cle physics. Manogue and Schray [4] describe the use of quaternions H to construct su(2, H)
and sl(2, H), which are real representations of B2 = so(5) and D3 = so(5, 1), respectively.
As they discuss, their construction naturally generalizes to the octonions O, yielding the real
representations su(2, O) and sl(2, O) of B4 = so(9) and D5 = so(9, 1), respectively. This can
be further generalized to the 3 × 3 case, resulting in su(3, O) and sl(3, O), which preserve the
trace and determinant, respectively, of a 3× 3 octonionic hermitian matrix, and which are real
representations of two of the exceptional Lie algebras, namely F4 and E6, respectively [5]. The
remaining three exceptional Lie algebras are also related to the octonions [6, 7]. The small-
est, G2, preserves the octonionic multiplication table and is 14-dimensional, while E7 and E8

have dimensions 133 and 248, respectively. A major stem in describing the infinite-dimensional
unitary representation of the split form of E8 was recently completed by the Atlas Project [8].

In sections 2 and 3, we label the Lie algebras using their standard name (e.g. An, Bn) and
also with a standard complex representation (e.g. su(3), so(7)). In section 4, when discussing
the subalgebras of E6, we also give particular choices of real representations.

2.2. Roots and Root Diagrams. Every simple Lie algebra g contains a Cartan subalgebra h ⊂
g, whose dimension is called the rank of g. The Cartan subalgebra h is a maximal abelian
subalgebra such that adH is diagonalizable for all H ∈ h. The Killing form can be used to
choose an orthonormal basis {h1, · · · , hl} of h which can be extended to a basis

{h1, · · · , hl, g1, g−1, g2, g−2, · · · , gn−l
2

, g−n−l
2
}

of g satisfying:

(1) [hi, gj ] = λj
igj (no sum), λj

i ∈ R
(2) [hi, hj ] = 0
(3) [gj , g−j ] ∈ h

The basis elements gj and g−j are referred to as raising and lowering operators. Property 1
associates every gj with an l-tuple of real numbers rj = 〈λj

1, · · · , λj
l 〉, called roots of the algebra,

and this association is one-to-one. Further, if rj is a root, then so is −rj = r−j , and these are
the only two real multiples of rj which are roots. According to Property 2, each hi is associated
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with the l-tuple 〈0, · · · , 0〉. Because this association holds for every hi ∈ h, these l-tuples are
sometimes referred to as zero roots. For raising and lowering operators gj and g−j , Property 3
states that rj + r−j = 〈0, · · · , 0〉.

Let ∆ denote the collection of non-zero roots. For roots ri and rj 6= −ri, if there exists rk ∈ ∆
such that ri + rj = rk, then the associated operators for ri and rj do not commute, that is,
[gi, gj ] 6= 0. In this case, [gi, gj ] = Ck

ijgk (no sum), with Ck
ij ∈ C, Ci

ij 6= 0. If ri + rj 6∈ ∆,
then [gi, gj ] = 0.

When plotted in Rl, the set of roots provide a geometric description of the algebra. Each
root is associated with a vector in Rl. We draw l zero vectors at the origin for the l zero
roots corresponding to the basis h1, · · · , hl of the Cartan subalgebra. For the time being, we
then plot each non-zero root ri = 〈λi

1, · · · , λi
l〉 as a vector extending from the origin to the

point 〈λi
1, · · · , λi

l〉. The terminal point of each root vector is called a state. As is commonly
done, we use ri to refer to both the root vector and the state. In addition, we allow translations
of the root vectors to start at any state, and connect two states ri and rj by the root vector rk

when rk + ri = rj in the root system. The resulting diagram is called a root diagram.

As an example, consider the algebra su(2), which is classified as A1. The algebra su(2) is the
set of 2× 2 complex traceless Hermitian matrices. Setting

σ1 =
[

0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
we choose the basis h1 = 1

2σ3 for the Cartan subalgebra h, and use g1 = 1
2(σ1 + iσ2) and g−1 =

1
2(σ1 − iσ2) to extend this basis for all of su(2). Then

(1) [h1, h1] = 0
(2) [h1, g1] = 1g1

(3) [h1, g−1] = −1g−1

(4) [g1, g−1] = h1

By Properties 2 and 3, we associate the root vector r1 = 〈1〉 with the raising operator g1 and
the root vector r−1 = 〈−1〉 with the lowering operator g−1. Using the zero root 〈0〉 associated
with h1, we plot the corresponding three points (1), (−1), and (0) for the states r1, r−1, and h1.
We then connect the states using the root vectors. Instead of displaying both root vectors r1

and r−1 extending from the origin, we have chosen to use only the root vector r−1, as r−1 = −r1,
to connect the states (1) and (0) to the states (0) and (−1), respectively. The resulting root
diagram is illustrated in Figure 1.

Figure 1. Root Diagram of A1 = su(2)

2.3. Weights and Weight Diagrams. An algebra g can also be represented using a collection
of d × d matrices, with d unrelated to the dimension of g. The matrices corresponding to
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the basis h1, · · · , hl of the Cartan subalgebra can be simultaneously diagonalized, providing d
eigenvectors. Then, a list wm of l eigenvalues, called a weight, is associated with each eigenvector.
Thus, the diagonalization process provides d weights for the algebra g. The roots of an n-
dimensional algebra can be viewed as the non-zero weights of its n× n representation.

Weight diagrams are created in a manner comparable to root diagrams. First, each weight wi

is plotted as a point in Rl. Recalling the correspondence between a root ri and the operator gi,
we draw the root rk from the weight wi to the weight wj precisely when rk + wi = wj , which at
the algebra level occurs when the operator gk raises (or lowers) the state wi to the state wj .

The root and minimal non-trivial weight diagrams of the algebra A2 = su(3) are shown
in Figure 2. 1 The algebra has three pairs of root vectors, which are oriented east-west (col-
ored blue), roughly northwest-southeast (colored red), and roughly northwest-southeast (colored
green). The algebra’s rank is the dimension of the underlying Euclidean space, which in this
case is l = 2, and the number of non-zero root vectors is the number of raising and lowering
operators. The minimal weight diagram contains six different roots, although we’ve only indi-
cated one of each raising and lowering root pair. Using the root diagram, the dimension of the
algebra can now be determined either from the number of non-zero roots or from the number
of root vectors extending in different directions from the origin. Both diagrams indicate that
the dimension of A2 = su(3) is 8 = 6 + 2. A complex semi-simple Lie algebra can almost 2 be
identified by its dimension and rank. We note that the algebra’s root system, and hence its root
diagram or weight diagram, does determine the algebra up to isomorphism.

Figure 2. Root and Minimal Weight Diagrams of A2 = su(3)

2.4. Constructing Root Diagrams from Dynkin Diagrams. In 1947, Eugene Dynkin sim-
plified the process of classifying complex semi-simple Lie algebras by using what became known
as Dynkin diagrams [9]. As pointed out above, the Killing form can be used to choose an or-
thonormal basis for the Cartan subalgebra. Then every root in a rank l algebra can be expressed
as an integer sum or difference of l simple roots. Further, the relative lengths and interior angle
between pairs of simple roots fits one of four cases. A Dynkin diagram records the configuration
of an algebra’s simple roots.

1There are two minimal representations of A2, only one of which is shown in Figure 2. The second minimal
weight diagram of A2 is similar, but rotated 180◦ from the one shown. We omit this diagram, since it contributes
no new information to the determination of subalgebras, which is our primary goal.

2For algebras of rank 6 and lower, the exceptions are that Bn = so(2n + 1) and Cn = sp(2 · n) have the same
dimension for each rank n, and that B6, C6, and E6 all have dimension 78.
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Each node in a Dynkin diagram represents one of the algebra’s simple roots. Two nodes are
connected by zero, one, two, or three lines when the interior angle between the roots is π

2 , 2π
3 , 3π

4 ,
or 5π

6 , respectively. If two nodes are connected by n lines, then the magnitudes of the corre-
sponding roots satisfy the ratio 1 :

√
n. An arrow is used in the Dynkin diagram to point toward

the node for the smaller root. If two roots are orthogonal, no direct information is known about
their relative lengths.

We give the Dynkin diagrams for the rank 2 algebras in Figure 3 and the corresponding
simple root configurations in Figure 4. For each algebra, the left node in the Dynkin diagram
corresponds to the root r1 of length 1, colored red and lying along the horizontal axis, and the
right node corresponds to the other root r2, colored blue.

�������� �������� �������� �������� �������� 〉 �������� �������� 〈 �������� �������� 〉 ��������
D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Figure 3. Rank 2 Dynkin Diagrams

D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Figure 4. Rank 2 Simple Roots

In Rl, each root ri defines an (l − 1)-dimensional hyperplane which contains the origin and
is orthogonal to ri. A Weyl reflection for ri reflects each of the other roots rj across this
hyperplane, producing the root rk defined by

rk = rj − 2(
rj • ri

|ri|
)

ri

|ri|
According to Jacobson [1], the full set of roots can be generated from the set of simple roots
and their associated Weyl reflections.

We illustrate how the full set of roots can be obtained from the simple roots using Weyl
reflections in Figure 5. We start with the two simple roots for each algebra, as given in Figure 4.
For each algebra, we refer to the horizontal simple root, colored red, as r1, and the other simple
root, colored blue, as r2. Step 1 shows the result of reflecting the simple roots using the Weyl
reflection associated with r1. In this diagram, the black thin line represents the hyperplane
orthogonal to r1, and the new resulting roots are colored green. Step 2 shows the result of
reflecting this new set of roots using the Weyl reflection associated with r2. At this stage,
both D2 = so(4) and A2 = su(3) have their full set of roots. We repeat this process again in
steps 3 and 4, using the Weyl reflections associated first with r1 and then with r2. The full root
systems for B2 = so(5) and C2 = sp(2 ·2) are obtained after the three Weyl reflections. Only G2

requires all four Weyl reflections.

simple_roots_to_full_roots.html
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Step 1: Weyl reflection using root r1

D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Step 2: Weyl reflection using root r2

D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Step 3: Weyl reflection using root r1

D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Step 4: Weyl reflection using root r2

D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Figure 5. Generating an algebra’s full root system using Weyl reflections

simple_roots_to_full_roots.html
simple_roots_to_full_roots.html
simple_roots_to_full_roots.html
simple_roots_to_full_roots.html
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D2 = so(4) A2 = su(3) B2 = so(5) C2 = sp(2 · 2) G2 = Aut(O)

Figure 6. Root Diagrams of Simple Rank 2 Algebras

The full set of roots have been produced once the Weyl reflections fail to produce additional
roots. The root diagrams are completed by connecting vertices ri and rj via the root rk precisely
when rk + ri = rj . From the root diagrams in Figure 6, it is clear that the dimension of A2 =
su(3) is 8 and the dimension of G2 is 14, while both B2 = so(5) and C2 = sp(2 · 2) have
dimension 10. Further, since the diagram of B2 can be obtained via a rotation and rescaling of
the root diagram for C2, it is clear that B2 and C2 are isomorphic.

2.5. Constructing Weight Diagrams from Dynkin Diagrams. Root diagrams are a spe-
cific type of weight diagram. While the states and roots can be identified with each other in
a root diagram, this does not happen for general weight diagrams. Weight diagrams are a col-
lection of states, called weights, and the roots are used to move from one weight to another.
Although it has only one root diagram, an algebra has an infinite number of weight diagrams.

Like a root diagram, any one of an algebra’s weight diagrams can be constructed entirely from
its Dynkin diagram. The Dynkin diagram records the relationship between the l simple roots
of a rank l algebra. Each simple root r1, · · · , rl is associated with a weight w1, · · · , wl. When
all integer linear combinations of these weights are plotted in Rl, they form an infinite lattice of
possible weights. This lattice contains every weight from every d×d (d ≥ 0) representation of the
algebra. These weights may be ordered. Every weight diagram then contains a highest weight W
which satisfies W > Wi for every other weight Wi in the diagram. Alternatively, a diagram’s
highest weight W is an element of the boundary W of the set of all weights in the diagram; W
contains all the weights in the diagram which are furthest from the origin. A particular weight
diagram is chosen by selecting a weight W . Weyl reflections related to the weights w1, · · · , wl

determine the weights in W for the weight diagram. To determine the diagram’s weights in the
interior of W , we note that valid weights must be connected by the algebra’s roots. Hence, all of
the weights within W which are integer linear combinations of the roots away from the weights
in W are valid and should be a part of the diagram. Having selected all of the diagram’s valid
weights, we complete the diagram by connecting pairs of weights with root vectors. 3 Choosing
a new weight W outside the original weight diagram’s boundary W selects a new, larger, weight
diagram. A smaller weight diagram is created by selecting a weight contained in the interior
of W .

3The distance between adjacent weights in the infinite lattice is less than or equal to the length of each root
vector. Root vectors do not always connect adjacent weights, but often skip over them.
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An equivalent method [10] constructs weight diagrams while avoiding the explicit use of Weyl
reflections. First, the l simple roots r1, · · · , rl are used to define the Cartan matrix A, whose
components are aij = 2 ri • rj

ri • ri . Equivalently, the components are:

aij =



2, if i = j;
0, if ri and rj are orthogonal;
−3, if the interior angle between ri and rj is 5π

6 , and
√

3|ri| = |rj |;
−2, if the interior angle between roots ri and rj is 3π

4 , and
√

2|ri| = |rj |;
−1, in all other cases;

Cartan matrices are invertible. Thus, the fundamental weights w1, · · · , wl defined by

wi =
l∑

k=1

(A−1)kir
k

are linearly independent. We create an infinite lattice W = {miw
i|mi ∈ Z} of possible weights

in Rl, and then label each weight W i = mi
jw

j ∈ W using the l-tuple M i =
[
mi

1, · · · ,mi
l

]
, called

a mark. We choose one of the infinite number of weight diagrams by specifying l non-negative
integers m0

1, · · · ,m0
l for the mark of the highest weight W 0.

While the components of the Cartan matrix record the geometry of the simple roots, the
components of each mark record the geometric configuration of the weights within the lattice.
Each weight W i is part of a shell of weights W which are equidistant from the origin. As discussed
earlier, Weyl reflections associated with the fundamental weights can be used to find the weights
in W . The diagram’s entire set of valid weights can also be determined using the mark M i of
each weight. The positive integers mi

j ∈ M i list the maximum number of times that the simple
root rj can be subtracted from W i while keeping the new weights on or within the boundary W .
Thus, weights W i − 1rj , · · · ,W i − (mi

j)r
j (no sum) are valid weights occurring on or inside W .

These new weights have marks M i−AT
i ,M i− 2AT

i , · · · ,M i−mi
jA

T
i , where AT

i is the transpose
of the ith column of the Cartan matrix A. Thus, given a weight diagram’s highest weight W 0,
this procedure selects all of the diagram’s weights from the infinite lattice. The diagram is
completed by connecting any two weights W i and W k by the root rj whenever W i + rj = W k.

This procedure is carried out for the the algebra B3 = so(7), whose simple roots are

r1 = 〈
√

2, 0, 0〉, r2 = 〈−
√

1
2 ,−

√
3
2 , 0〉, r3 = 〈0,

√
2
3 ,

√
1
3〉

We produce the Cartan matrix A, find A−1, and list the fundamental weights.

Cartan Matrix

A =

 2 −1 0
−1 2 −1
0 −2 2


Inverse Cartan Matrix

A−1 =

 1 1 1
2

1 2 1
1 2 3

2


Fundamental Weights

w1 = 1r1 + 1r2 + 1r3

w2 = 1r1 + 2r2 + 2r3

w3 = 1
2r1 + 1r2 + 3

2r3
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Starting with the highest weight W 0 = w1, whose mark is [1, 0, 0], the above procedure
generates the following weights:

Marks Weights

[1, 0, 0]
−r1

wwoooo
o

W 0 = [1, 0, 0] • 〈w1, w2, w3〉 = 1r1 + 1r2 + 1r3

[−1, 1, 0]

−r2

��

W 1 = [−1, 1, 0] • 〈w1, w2, w3〉 = 0r1 + 1r2 + 1r3

[0,−1, 2]
−r3

''OOO
OO

W 2 = [0,−1, 2] • 〈w1, w2, w3〉 = 0r1 + 0r2 + 1r3

[0, 0, 0]
−r3

''OOO
OO

W 3 = [0, 0, 0] • 〈w1, w2, w3〉 = 0r1 + 0r2 + 0r3

[0, 1,−2]

−r2

��

W 4 = [0, 1,−2] • 〈w1, w2, w3〉 = 0r1 + 0r2 − 1r3

[1,−1, 0]
−r1

wwoooo
o

W 5 = [1,−1, 0] • 〈w1, w2, w3〉 = 0r1 − 1r2 − 1r3

[−1, 0, 0] W 6 = [−1, 1, 0] • 〈w1, w2, w3〉 = −1r1 − 1r2 − 1r3

We plot the weight W 0, · · · ,W 6 and the appropriate lowering roots −r1, · · · ,−r3 at each
weight for this weight diagram of B3 = so(7) in Figure 7. The full set of roots are used to
connect pairs of weights, giving the complete weight diagram of B3 = so(7) in Figure 8.

Figure 7. B3 = so(7) weight skeleton
Figure 8. B3 = so(7) weight diagram

2.6. Rank 3 Root and Weight Diagrams. Using the procedures outlined above, we catalog
the root and minimal weight diagrams for the rank 3 algebras. We did this by writing a Perl
program to generate the weight and root diagram structures and return executable Maple code.
We then used Maple and Javaview to display the pictures.

The 3-dimensional root diagrams of the rank 3 algebras are given in Figure 9. The root
diagrams of A3 = su(4) and D3 = so(6) are identical. Hence, A3 = D3. These algebras have
dimension 15, as their root diagram contains 12 non-zero states. The B3 = so(7) and C3 =
sp(2 · 3) algebras both have dimension 21, and their root diagrams each contain 18 non-zero

weight_B3_skeleton.html
weight_B3_skeleton.html
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states. Each of these algebras contain the A2 = su(3) root diagram, which is a hexagon.
This can be seen at the center of each rank 3 algebra by turning its root diagram in various
orientations. The modeling kit ZOME [11] can be used to construct the rank 3 root diagrams.
The kit contains connectors of the right length and nodes with the correct configuration of
connection angles to construct all of the rank 3 root diagrams.

su(4) = A3 = D3 = so(6) B3 = so(7) C3 = sp(2 · 3)

Figure 9. Rank 3 Root Diagrams

An algebra’s minimal weight diagram has the fewest number of weights while still containing
all of the roots. Figure 10 shows the minimal weight diagrams for A3 = D3, B3, and C3. Each
root occurs once in the diagram for A3 = D3, while in the diagram for B3 every root is used
twice. The minimal weight diagram for C3 is centered about the origin, and the roots passing
through the origin (colored red, blue, and brown) occur once, while the other roots occur twice.

su(4) = A3 = D3 = so(6) B3 = so(7) C3 = sp(2 · 3)

Figure 10. Rank 3 Minimal Weight Diagrams

3. Subalgebras of Algebras

We have already noted that we can recognize A2 = su(3) as a subalgebra of A3 = su(4),
B3 = so(7), and C3 = sp(2 · 3) by identifying its hexagonal root diagram in each of the larger
root diagrams. This section develops two further methods which help us identify subalgebras
using root and weight diagrams. We emphasize that these methods are valid only when applied
to the full root diagram, but not when applied to the root system alone.

rank_3_root_diagrams.html
rank_3_root_diagrams.html
rank_3_root_diagrams.html
rank_3_min_weight_diagrams.html
rank_3_min_weight_diagrams.html
rank_3_min_weight_diagrams.html
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3.1. Subalgebras of B3 = so(7) using Root Diagrams. Root and weight diagrams can
be used to identify subalgebras. For algebras of rank l ≤ 3, we can recognize subdiagrams
corresponding to subalgebras by building the algebra’s root and weight diagrams and rotating
them in R3.

We illustrate the process of finding all subalgebras of B3 = so(7) by using its root diagram.
When rotated to the position in Figure 11, the large horizontal 2-dimensional rectangle through
the origin (containing roots colored green and magenta) contains eight non-zero nodes. This
subdiagram is the root diagram of the 10-dimensional algebra B2 = C2. The smaller rectangular
diagrams lying in parallel planes above and below this large rectangle contain all of the roots
vectors of B2 = C2. These diagrams are minimal weight diagrams of B2 = C2.

Two additional rotations of the root diagram of B3 = so(7) produce subalgebras. In Figure 12,
the horizontal plane through the origin contains only two orthogonal roots, which are colored
blue and fuchsia. These roots comprise the root diagram of D2 = su(2) + su(2). We have
already identified the hexagonal A2 = su(3) root diagram in the horizontal plane containing
the origin in Figure 13. Each horizontal triangle above and below this plane is a minimal
weight representation of A2. In addition, the subdiagram containing the bottom triangle, middle
hexagon, and top triangle is the 15-dimensional, rank 3 algebra A3 = D3. Thus, it is possible
to identify both rank l − 1 and rank l subalgebras of a rank l algebra.

Figure 11. B2 ⊂ B3 Figure 12. D2 ⊂ B3 Figure 13. A2 ⊂ D3 ⊂ B3

Identifying Subalgebras of B3 = so(7) using Subdiagrams of its Root Diagram

Not all subalgebras of a rank l algebra can be identified as subdiagrams of its root or weight
diagram. When extending a rank l algebra to a rank l + 1 algebra, each root ri = 〈λi

1, · · · , λi
l〉

is extended in Rl+1 to the roots ri1 , · · · , rim , where rij = 〈λi
1, · · · , λi

l, λ
ij
l+1〉. Here, λ

ij
l+1 is one

of m ≥ 1 different eigenvalues values defined by the extension of the algebra. Hence, although
roots ri1 , · · · , rim are all distinct in Rl+1, they are the same root when restricted to their first l
coordinates. Thus, we can identify subalgebras of a rank l+1 algebra by projecting its root and
weight diagrams along any direction.

Just as our eyes “see” objects in R3 by projecting them into R2, we can identify subalgebras
of B3 = so(7) by projecting its root and weight diagram into R2. In Figures 14 and 15, we have
rotated the root diagram of B3 so that our eyes project one of the root vectors onto another

subalgebras_of_B3_using_root_diagram.html
subalgebras_of_B3_using_root_diagram.html
subalgebras_of_B3_using_root_diagram.html
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root vector. This method allows us to identify B2 = so(5) and G2 as subalgebras of B3 by
recognizing their root diagrams in Figures 14 and 15, respectively. Although we previously
identified B2 ⊂ B3 by using a subdiagram confined to a plane, we could not identify G2 as a
subalgebra of B3 using that method.

Figure 14. B2 = so(5) ⊂ B3 = so(7) Figure 15. G2 ⊂ B3 = so(7)

Identify Subalgebras of B3 = so(7) using Projections of its Root Diagram

3.2. Geometry of Slices and Projections. The procedures in subsections 2.4 and 2.5 allow
us to create root and weight diagrams for algebras of rank greater than 3. We now give precise
definitions for the two processes we used in subsection 3.1 to identify subalgebras of B3 = so(7).

We first generalize the method that allowed us to find subalgebras of B3 = so(7) by identifying
subdiagrams in specific cross-sections of its root diagram. We refer to this method as “slicing”,
based on an analogy to slicing a loaf of bread. A knife, making parallel cuts through the bread,
creates several independent slices of the bread. We use the same idea to slice an algebra’s root or
weight diagram. A set of l−1 linearly independent vectors V = {v1, · · · , vl−1} defines an (l−1)-
dimensional hyperplane in Rl. Given V , a slice Dα of an algebra’s l-dimensional diagram D is
the subdiagram consisting of the vertex α and all root vectors and vertices in the hyperplane
spanned by V containing α. A slicing of a diagram D using V separates D into a finite set
of disjoint slices. The root vectors which connect vertices from two different slices are called
struts. We are interested in slices of D which contain diagrams corresponding to the algebra’s
subalgebras. Hence, the slices must contain root vectors of D, and in practice we choose V to
consist of integer linear combinations of simple roots.

A diagram’s slices can tell us about its original structure. When dealing with bread, we can
obviously stack the slices on top of each other, in order, to recreate an image of the pre-cut loaf
of bread - our mind removes the cuts made by the knife. When dealing with root and weight
diagrams, we do not have the benefit of using the shape of an “outer crust” to guide the stacking
of the slices of the diagram. Instead of severing the struts, we color them grey to make them less
prominent. This allows us to use the slices and struts to recreate the structure of the original
root or weight diagram.

When the dimension of the diagram is greater than 3, stacking slices on top of each other
is not an effective means of recreating the root or weight diagram. Instead, we lay the slices

subalgebras_of_B3_using_projection.html
subalgebras_of_B3_using_projection.html
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out along one direction, much as slices of bread are laid in order along a countertop to make
sandwiches. This allows us to display a 3-dimensional diagram in two dimensions, as we have
shown for B3 = so(7) in Figure 16, or a 4-dimensional diagram in three dimensions, as we have
shown for the root diagram of B4 = so(9) in Figure 17. Of course, a 5-dimensional diagram can
be displayed in three dimensions by first laying 4-dimensional slices along the x axis, and then
slicing each of these diagrams and spreading them along directions parallel to the y axis. This
procedure generalizes easily to diagrams for rank six algebras, and can be modified to allow any
compact n-dimensional diagram to be displayed in three dimensions.

Figure 16. Slicing of B3 = so(7) using root r1, colored red, and root r2,
colored blue.

Figure 17. Slicing of B4 = so(9) using roots r1 (red), r2 (green), and r3 (blue).

For the Lie algebras of rank l = 6 or less, we implement a slicing as follows. We first build
the algebra’s root or weight diagram as described in subsection 2.5. Given three vectors v1, v2,
and v3 to define the slicing, we apply an orthonormal transformation so that the slices are
contained within the first 3 coordinates of Rl. We then use the projection (given here for l =
6) R6 → R3 : (x, y, z, u1, u2, u3) → (x + s1 • u1, y + s2 • u2, z + s3 • u3), where s1, s2, and s3 are
separation factors used to separate the slices from each other when placed on our 3-dimensional
countertop. 4 When helpful, we keep the grey colored struts in the sliced diagrams. 5 While
slicing preserves the length and direction of any root vector within a slice, laying the slices out
along one direction obviously changes these characteristics for the grey struts.

The second method used to find subalgebras of B3 = so(7) in subsection 3.1 involved project-
ing the 3-dimensional diagram into a 2-dimensional diagram. A projection of an l-dimensional

4An equivalent projection R6 → R3 : (x, y, z, u1, u2, u3) → (x + s1u1 + s2u2 + s3u3, y, z) with s1 > η2s2 > η3s3

for sufficiently large η2 and η3 will string a 6-dimensional diagram along one axis. The u1 coordinate will separate
the different 5-dimensional slices, with s1u1 moving these different slices very apart. The u2 and u3 coordinates
will locally separate the 4-dimensional and 3-dimensional slices along the x axis, but sufficiently small s2 and s3

will keep the subslices of one 5-dimensional slice from interfering with another 5-dimensional slice. This method
generalizes to n-dimensional diagrams, but creates a very long string of the resulting diagrams.

5The large number of grey lines in a diagram can hide the important roots within each slice in addition to
causing computational overload.

slicing_of_B4.html
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diagram to an (l−1)-dimensional diagram is accomplished by projecting along a direction spec-
ified by p. To be useful, this projection must preserve the lengths of the roots, and the angles
between them, when those roots are orthogonal to p.

Given a direction specified by a vector p, we create a linear transformation to change the
basis from the standard basis e1, · · · , el to a new orthonormal basis whose first basis vector
is p

|p| . This is accomplished by applying Gram-Schmidt orthonormalization to the ordered set
of vectors P = {p, e1, e2, · · · , el}, which is linearly dependent, and keeping the first l non-zero
vectors. We then use a linear transformation to convert the standard basis to this new basis
and apply it to the simple roots. Finally, we throw away the first coordinate in the expression
for each simple root. This allows us to build the root or weight diagram following the procedure
in subsection 2.5, using the original simple roots to define the weights W 0, · · · ,Wn, which are
then constructed using our projected simple roots. It is faster computationally to apply the
projection to the simple roots before building the diagram than to apply the projection to the
entire diagram after it has been built. As we can only display diagrams in three dimensions,
when l ≥ 4, we repeat this procedure l − 3 times using l − 3 projection directions p1, · · · , pl−3.

The Gram-Schmidt process smoothly transforms a set of linearly independent vectors into a
set of orthonormal vectors, and we choose our vectors in P in a smooth way. However, as P is
linearly dependent, our resulting change of basis transformation will not smoothly depend on p
if p ∈ span(e1, · · · , el−1). Thus, we place the restriction that | p

|p| · e
l| > ε, for some small ε.

In practice, we are usually interested in directions p which are integer or half-integer linear
combinations of the simple roots, and change p to p + 0.015e1 + 0.015e2 + · · · + 0.015el. This
assures that our projection smoothly depends upon p, or in the case l ≥ 4, on p1, · · · , pl−3.

By setting the separation factors si = 0, the slicing method can be used to produce another
projection of the diagram D. This choice for si collapses the separate slices Dα onto one another,
and centers them about the origin. Given a hyperplane V , this slice and collapse method
projects the slices along a direction perpendicular to V . This provides less flexibility that
the true projection method, which allows a projection along any direction p when {p} ∩ V = 0.
Nevertheless, by setting some si = 0, the slice and collapse method can produce useful projections
of 5-dimensional and 6-dimensional diagram.

The slight difference between the projection method and slice and collapse method is illus-
trated in Figure 18 and Figure 19. Figure 18 projects the root diagram of C4 = sp(2 · 4) along
the simple root r1. The result is the root diagram of C3 = sp(2 · 3). Figure 19 collapses the
slices of the root diagram of C4 = sp(2 · 4), defined using the simple roots r2, r3, and r4, onto
the origin. While this diagram contains the C3 root diagram, consisting of two large triangles
on either side of a large hexagon, it also contains smaller triangles on either side of the hexagon.
These small triangles are part of an octahedron, which is one of the original slices of C4. In
Figure 19, the octahedron is actually disjoint from the C3 root diagram. 6 However, in the true
projection, in Figure 18, the octahedron is placed by the projection either above or below the

6While the root vectors in the octahedron and the C3 root diagram appear to intersect, they do not terminate
or start from any common vertex.
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origin. Whenever the slice and project method produces overlapping disjoint diagrams, a better
projection can be obtained by translating the collapsed slice away from the origin.

Figure 18. Projecting
the C4 = sp(2 · 4) root dia-
gram along simple root r1

Figure 19. Collapsing the
slices of C4 = sp(2 · 4) defined by
simple roots r2, r3, and r4 onto
the origin.

3.3. Identifying Subalgebras using Slicings and Projections. Given an algebra g, the
slicing and projection techniques described above produce subdiagrams of the algebra’s root
and weight diagrams. We then compare these subdiagrams to a list of known Lie algebra
diagrams. If the subdiagram’s vertices and root configuration exactly matches the configuration
of a diagram for the Lie algebra g′, then g′ is a subalgebra of g.

While a projection along one of the diagram’s root vectors will only allow an identification
of subalgebras of rank l − 1, slicings of a rank l algebra’s root diagram allow identifications of
subalgebras of rank l and l−1. When successfully slicing root diagrams, the middle slice will be
the root diagram of a rank l−1 subalgebra, and other slices will be different weight diagrams for
that subalgebra [12]. If a subdiagram, consisting of some slices, contains the original diagram’s
highest weight, then it may be used to identify a rank l subalgebra.

We emphasize that our methods require the subdiagram to contain the original diagram’s
highest weight. To illustrate, consider the root diagram of C3 = sp(2 · 3). The short roots in
the diagram of C3 = sp(2 · 3) look like they form the A3 = D3 algebra in Figure 9. However,
the highest weight of the C3 diagram is the furthest away from the origin, at the tip of the
longest root extending from the origin. This weight is outside any embedding of the A3 = D3

root diagram into the root diagram of C3. In fact, A3 = D3 is not a subalgebra of C3, as there
are two operators g1 and g2 corresponding to the short roots whose commutator is an operator
corresponding to one of the longer roots. Had the subdiagram contained the highest weight,
then g1 and g2 would have necessarily commuted to a weight contained within the subdiagram.

We have indicated these methods do not work when applied to systems of roots. For example,
if projection is applied to the system of roots for A3, it appears that this algebra contains G2.
When projecting the root diagram for A3, however, we can clearly see that the resulting diagram
is not the root diagram of G2. Although the projected diagram contains all of the vertices needed
for the root diagram of G2, it does not contain all of the edges.

projection_and_collapsed_slicing_of_C4.html
projection_and_collapsed_slicing_of_C4.html
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These methods only allow us to find subalgebras of the complex simple Lie algebras. For the
case of real subalgebras of real Lie algebras, these techniques can only indicate which contain-
ments are not possible (i.e. a real form of C3 can not contain a real form of A3). See [13] for
information regarding the real Lie subalgebras of E6.

4. Applications to Algebras of Dimension Greater than 3

We now show how these two techniques can be applied to find subalgebras of rank l algebras,
for l ≥ 4. We begin by using slices and projections to find subalgebras of the exceptional Lie
algebra F4. We then show how to apply these techniques to algebras of higher rank.

4.1. Subalgebras of F4 using Slices. We apply the slice and projection techniques to the 52-
dimensional exceptional Lie algebra F4, whose Dynkin diagram is shown in Figure 20. We
number the nodes 1 through 4, from left to right, and use this numbering to label the simple
roots r1, · · · , r4. Thus, the magnitude of r1 and r2 is greater than the magnitude of r3 and r4.
We color these simple roots magenta (r1), red (r2), blue (r3), and green (r4).

�������� �������� 〉 �������� ��������
Figure 20. F4 Dynkin Diagram

We consider the slicing of F4 defined using roots r2, r3, and r4. Laying the slices along the x
axis, the large number of grey struts in the resulting diagram, Figure 21, makes it difficult
to observe the underlying structure of each slice, and so they are removed from the diagram
in Figure 22. This diagram clearly contains three nontrivial rank 3 root or weight diagrams.
Comparing this diagram to the root diagrams in Figure 9, we identify the middle diagram,
containing 18 non-zero vertices, as the root diagram of C3 = sp(2 · 3). The other two slices are
identical non-minimal weight diagrams of C3. Because there are 46 non-zero vertices visible in
Figure 22, it is clear that two single vertices are missing from this representation of the root
diagram of F4, which has dimension 52.

Figure 23 is the result of slicing the root diagram of F4 using the simple roots r1, r2, and r3.
The center diagram again contains 18 non-zero weights, which we identify as B3 = so(7) using
Figure 9. Hence, B3 ⊂ F4. Furthermore, as all 48 non-zero vertices are present and there
are 5 nontrivial slices in the root diagram, we compare this sliced root diagram of F4 with that
of B4 = so(9), which is shown in Figure 17, and see that B3 ⊂ B4 ⊂ F4. An additional slicing
of B4 shows D4 = so(8) ⊂ B4 ⊂ F4.

4.2. Subalgebras of F4 using Projections. Given the 4-dimensional root diagram of F4, we
can observe its 3-dimensional shadow when projected along any one direction. However, as
a single projection eliminates the information contained in one direction, it is not possible to
understand the root diagram of F4 using a single projection. We work around this problem by
creating an animation of projections, in which the direction of the projection changes slightly
from one frame to the next.
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Figure 21. Slicing of F4 using roots r2 (red), r3 (blue),
and r4 (green). Grey colored struts connect vertices from
different slices.

Figure 22. Slicing of F4 using roots r2, r3, and r4.
Eliminating the struts shows C3 = sp(2 · 3) ⊂ F4

Figure 23. Slice of F4 showing B3 = so(7) ⊂ B4 = so(9) ⊂ F4

The Dynkin diagram of F4 reduces to the Dynkin diagram of C3 = sp(2 · 3) or B3 = so(7)
by eliminating either the first or fourth node. The simple roots r1 and r4 define a plane in R4,
and we choose a projection vector pθ = cos θr1 + sin θr4 to vary discretely in steps of size π

18
from θ = 0 to θ = π

2 in this plane. Each value of θ produces a frame of the animation sequence
using the projection procedures of section 3.2. The resulting animation is displayed in Figure 24.

The result of each projection of F4 is a diagram in three dimensions. We create the animation
using Maple, and the software package Javaview is used to make a live, interactive applet of
the animation. The Javaview applet allows the animation to be rotated in R3 as it plays. In
particular, when θ = 0, we can rotate the diagram to show a weight diagram of C3 = sp(2 · 3),
which our eyes project down to the root diagram of B2 = C2. Without rotating the diagram,

F4_adj52_slice_1_2_3_grey.htm
F4_adj52_slice_1_4_23.htm
F4_adj52_slice_1_2_3.htm


18 A. WANGBERG AND T. DRAY

the animation continuously changes the projected diagram as θ increases. When θ = π
2 , our

eyes project the root diagram of B3 = so(7) down to the root diagram of G2. However, it is also
possible to rotate the animation to see the root diagram of G2 at various other values of θ. The
interactive animation makes it easier to explore the structure of F4.

This interactive animation can also illustrate an obvious fact about planes in R4. As pθ is
confined to a plane, there is a plane P⊥ which is orthogonal to each of the projection directions.
Thus, the projection does not affect P⊥, and it is possible to see this plane in R3 by rotating
the animation to the view shown in the sixth diagram in Figure 24. In this configuration, the
roots and vertices in this diagram do not change as the animation varies from θ = 0 to θ = π

2 .
While this is obvious from the standpoint of Euclidean space, it is still surprising this plane can
be seen in R3 even as the projected diagram is continually changing.

θ = 0 θ = π
8 θ = π

4

θ = 3π
8 θ = π

2 Orthogonal View in R4

Figure 24. Animation of F4, projecting along the direction pθ = cos(θ)r1 + sin(θ)r4

which is confined to a plane in R4 containing r1 and r4.

4.3. Modifications of methods for E6. Of particular interest is the exceptional Lie alge-
bra E6, which preserves the the determinant of elements of the Cayley plane. As explained in
Section 2.1, this allows us to write E6 = sl(3, O). It therefore naturally contains the subalge-
bras sl(2, O) and su(2, O), which are identified as real forms of D5 and B4, respectively [13].

The projection technique can also be used to identify subalgebras of rank E6. In one version,
we project the root diagram of E6 along one direction, thereby creating a diagram that possibly
corresponds to a rank 5 algebra g. We then apply the same pair of projections to our projected E6

_F4_anim.htm
_F4_anim.htm
_F4_anim.htm
_F4_anim.htm
_F4_anim.htm
_F4_anim.htm
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diagram and to the candidate root diagram of g. If these two projections preserve the number
of vertices in the 5-dimensional diagrams, it is possible to compare the resulting diagrams in R3.
If we have identified the correct subalgebra of E6, the resulting two diagrams should match for
every pair of projections applied to the 5-dimensional diagrams.

Projections of rank 5 and 6 algebras can also be simulated using slicings of their root diagrams.
This is done using the slice and collapse technique, which collapses all the slices onto one another
in a particular direction. When using this technique, we draw the grey struts, as we are now
interested in the root diagram’s structure after the projection. This technique provides clearer
pictures compared to the pure projection method.

4.4. Subalgebras of E6. We list in Figure 25 the subalgebras of E6 found using the slicing
and projection techniques applied to an algebra’s root diagram. As mentioned in Section 2.1,
we list certain real representations of the subalgebras of the sl(3, O) representation of E6 in the
diagram. The particular real representations are listed below each algebra.

We use different notations to indicate the particular method that was used to identify subalge-
bras. The notation A //B indicates the slicing method was used to identify A as a subalgebra
of B. The notation A //B indicates that A was identified as a subalgebra of B using the
normal projection technique, while we indicate projections done by the slice and collapse method

as A
s+p //B . If both dotted and solid arrows are present, then A can be found as a subalgebra

of B using both slicing and projection methods. If A and B have the same rank, only the slicing
method allows us to identify the root diagram of A as a subdiagram of B. This case is indicated
in the diagram using the notation A

� � //B . Each of the subalgebra inclusions below can be
verified online [14].

Lists of subalgebra inclusions are found in [12], which applies subalgebras to particle physics,
and in [15], which recreates the subalgebra lists of [16]. However, the list in [15] mistakenly has C4

and B3 as subalgebras of F4, instead of C3 and B4. Further, the list omits the inclusions G2 ⊂
B3, C4 ⊂ E6, F4 ⊂ E6, and D5 ⊂ E6. The correct inclusions of C3 ⊂ F4 and B4 ⊂ F4 are
listed in Section 8 of [16], but the Bn and Cn chains are mislabeled in the final table which was
used by Gilmore in [15]. Although van der Waerden uses root systems do determine subalgebra
inclusions, he mistakenly claims that Dn ⊂ Cn as a subalgebra in Section 21, which is not true
since their root diagrams are based upon inequivalent highest weights.

In [9], Dynkin classified subalgebras depending upon the root structure. If the root system
of a subalgebra can be a subset of the root system of the full algebra, the subalgebra is called a
regular subalgebra. Otherwise, the subalgebra is special. A complete list of regular and special
subalgebras are listed in [12]. All of the regular embeddings of an algebra in a subalgebra of E6

can be found using the slicing method. In many cases, the projection technique also identifies
these regular embeddings of subalgebras, but there are regular embeddings which can are not
recognized as the result of projections. The special embeddings of an algebra in a subalgebra
of E6 can only be found using the projection technique.
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5. Conclusion

We have presented here methods which illustrate how root and weight diagrams can be used
to visually identify the subalgebras of a given Lie algebra. While the standard methods of de-
termining subalgebras rely upon adding, removing, or folding along nodes in a Dynkin diagram,
we show here how to construct any of a Lie algebra’s root or weight diagrams from its Dynkin
diagram, and how to use geometric transformations to visually identify subalgebras using those
weight and root diagrams. In particular, we show how these methods can be applied to algebras
whose root and weight diagrams have dimensions four or greater. In addition to pointing out
the erroneous inclusion of C4 ⊂ F4 in [15, 16], we provide visual proof that C4 ⊂ E6 and list
all the subalgebras of E6. While we are primarily concerned with the subalgebras of E6, these
methods can be used to find subalgebras of any rank l algebra.
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A //B indicates A is realized using a slice of B.
A //B indicates A is a projection of B.

A
s+p //B indicates B projects to A when using the slice and project method.

A
� � //B indicates A and B have the same rank, but A is a subdiagram of B.

Figure 25. Subalgebras of E6 together with some important real representations
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