Both sides previous revisionPrevious revisionNext revision | Previous revision |
pld:start [2016/04/21 12:11] – james | pld:start [2020/03/06 09:04] (current) – external edit 127.0.0.1 |
---|
| |
{{:pld:thermionics_chamber_20150422.png|}} | {{:pld:thermionics_chamber_20150422.png|}} |
| |
| {{PLD_process_schematic-ours.png|}} |
| |
==== Load Lock ==== | ==== Load Lock ==== |
//Thermionics chamber//: The Thermionics chamber is set up so that in event of a power failure, the valves between the roughing and turbo pumps will remain closed and the pumps will not turn back on when power is restored. However, the gate valve to the main chamber will be automatically closed, which will prevent the chamber from venting to atmospheric pressure immediately. With the gate valve closed, the pressure should stay in the 10<sup>-7</sup> Torr range and very slowly increase until the system is reset. | //Thermionics chamber//: The Thermionics chamber is set up so that in event of a power failure, the valves between the roughing and turbo pumps will remain closed and the pumps will not turn back on when power is restored. However, the gate valve to the main chamber will be automatically closed, which will prevent the chamber from venting to atmospheric pressure immediately. With the gate valve closed, the pressure should stay in the 10<sup>-7</sup> Torr range and very slowly increase until the system is reset. |
| |
If you discover that the power has gone out, make sure that the gate valve has closed (by the red indicator light if the power has been restored, or the white spot on the indicator beneath the gate valve motor is on closed). If the valve is closed, you can use {{:pld:reset_pld_thermionics2015.pdf|these instructions}} to restore the system. If the pressure is higher than 10<sup>-3</sup> or if the gate valve does not appear to have closed, then follow the Pump Down Procedures in the instructions (toggle switch up on silver panel, reset buttons on black panels, wait for the pressure to drop below 10<sup>-3</sup> Torr range, then restart Turbo Pumps). Here is a schematic for reference.{{:pld:control_tower.gif|}} | If you discover that the power has gone out, make sure that the gate valve has closed (by the red indicator light if the power has been restored, or the white spot on the indicator beneath the gate valve motor is on closed). If the valve is closed, you can use {{:pld:reset_pld_thermionics_2016.pdf|these instructions}} to restore the system. If the pressure is higher than 10<sup>-3</sup> or if the gate valve does not appear to have closed, then follow the Pump Down Procedures in the instructions (toggle switch up on silver panel, reset buttons on black panels, wait for the pressure to drop below 10<sup>-3</sup> Torr range, then restart Turbo Pumps). Here is a schematic for reference.{{:pld:control_tower.gif|}} |
| |
| |
heating | heating |
| |
{{:pld:compex_0300_user_manual_.pdf|ComPex 201 excimer laser manual}} | ComPex 201 excimer laser manual has been taken off-line |
| |
{{:pld:siteprepcomp_1299.pdf|Site Prep documentaion}} for ComPex 201 | {{:pld:siteprepcomp_1299.pdf|Site Prep documentaion}} for ComPex 201 |
| |
The process we use for cleaning targets/substrate holders includes a series of increasing grit sand paper. The grit sizes range from 200 to 2000 and depending on the density of the material we may start at a smaller or larger grit. For example a soft ceramic target will most likely require you to start with a higher grit (say 800 or 1000) while polishing the substrate holders may require a much lower grit (say 200 or 400) to remove as much of the deposited material as possible. One thing to keep in mind when polishing targets/substrate holders is that the type of material you are polishing may be toxic. A list of toxic metals which need to be disposed of through EH&S is posted on the fume hood and can also be found {{:pld:hazardous_heavy_metals.docx|here}}. | The process we use for cleaning targets/substrate holders includes a series of increasing grit sand paper. The grit sizes range from 200 to 2000 and depending on the density of the material we may start at a smaller or larger grit. For example a soft ceramic target will most likely require you to start with a higher grit (say 800 or 1000) while polishing the substrate holders may require a much lower grit (say 200 or 400) to remove as much of the deposited material as possible. One thing to keep in mind when polishing targets/substrate holders is that the type of material you are polishing may be toxic. A list of toxic metals which need to be disposed of through EH&S is posted on the fume hood and can also be found {{:pld:hazardous_heavy_metals.docx|here}}. |
| |
| ==Cleaning Chamber == |
| Advice from Hiroshi Yanagi (Yamanashi) about cleaning a sulfide chamber (2017). "We use H2O2 for cleaning vacuum chamber, but only when it is terrible. Usually, acetone and alcohol is enough. When you use H2O2 or cleanser, clean up with water, acetone and alcohol. Then bake the chamber. For window cleaning, we used abrasive cleanser for bright polishing of metal surface (not for dish cleaning.)" |
| |
| |
| |
| |