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Chapter 1
Origin

In 1798 at the age of 21 Carl Friedrich Gauss wrote his classic number theory book Dis-
quisitiones Arithmeticae. Three years later it was published, containing many results from
previous mathematicians such as Legendre and Euler, along with many of his own contribu-
tions. This work covers many different topics including congruences, quadratic reciprocity,
cyclotimic fields and quadratic forms of up to 3 variables. In Section IV, Congruences of the
Second Degree, Gauss addresses issues dealing with the behavior of binary quadratic forms,
in particular, expressions that can be written as

az? + 2bxy + cy?

with discriminant defined to be
b — ac.

At the end of Section IV in articles 303 and 304 Gauss puts forth a few conjectures of
interest. Some of these conjectures remain open questions today, more than 200 years after
their publication!

1.1 Gauss’ Conjectures

In article 303, Gauss presents a table of select negative discriminants of forms which he
conjectures to be complete. He classified them by class, and genus which will be discussed
in more detail later. However, in the English translation of Disquisitiones Arithmeticae,
Clarke notes Gauss’ view that, “... rigorous proofs of these observations [of completeness]
seem to be very difficult” [Gau66]. Accompanying these conjectures, Clarke translates Gauss
as saying,

Since the tables [of discriminants] have been extended far beyond [the value
of 1848] , and since it furnishes no other belonging to these classes, there seems to
be no doubt that the preceding series [of class numbers| does in fact terminate,
and by analogy it is permissible to extend the same conclusion to any other
classifications.[Gau66]



Genus | Classes/Genus Negative Discriminant

1 1 1,2,3,4,7
1 3 11,10,23,27,31,43,67,163
1 5 47,79,103,127
1 7

71,151,223,343,463 487

16 1 840,1320,1365,1848

Table 1.1: Gauss’ Discriminant Table

In the following article 304, Gauss discusses forms of positive discriminant,

It is a curious question and it would not be unworthy of a geometer’s talent
to investigate the law that governs the fact that [discriminants] having one class
in a genus become increasingly rare.[Gau66|

As one can imagine, a statement like this from the great Carl Fredrich Gauss is enough to
have claimed the interest of many mathematicians throughout the years.

The conjectures from Gauss’ table, together with the comments above make up the
classical version of the Gauss Class Number Problem. To avoid confusion, it is necessary to
point out that Gauss originally stated these conjectures using a less general representation
of binary quadratic forms then we currently use. Today we represent these forms as,

az? + bxy + cy?
where the discriminant is defined to be
d = b* — 4ac.
In Disquisitiones Arithmeticae, Gauss works on forms as stated earlier
2 2
ax® + 2bxy + cy”.

Notice when working with these forms we have a distinct advantage. We are considering the
discriminant to be the term beneath the square root in the quadratic formula

(2by)* — dacy® = 4y (b* — ac)
and since 4y is a square, we ignore it and work with the simplified
d="b*—ac.

Notice that Gauss was actually going about solving a much simpler problem then is
currently considered the Gauss Class Number Problem. This can cause much confusion
if not noted, especially for one picking up Disquisitiones Arithmeticae for the first time.
Notice, Gauss stated that the negative discriminants having only one class are {-1, -2, -3,
-4, -7 } whereas today we consider them to be {-3, -4, -7, -8, -11, -19, -43, -67, -163}.
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Definition 1. If d # 1 is a integer such that d = 1 (mod 4) or d = 4m where m is square-free
and m = 2,3 (mod 4), then we call d a fundamental discriminant.

Sometimes, we will have a discriminant with a square factor. In these cases we are
interested in the non-square factor. If the square free part does not have the form of a
discriminant b? — 4ac for some a,b, and ¢, then we are forced to leave the square factor in
the discriminant. Otherwise we need to remove the square factor to obtain a fundamental
discriminant. As you can see, Gauss’ discriminant is four times larger than the modern form
of a discriminant. If we multiply Gauss’ class number one discriminants by 4 we get {-4, -8,
-12, -16, -28}. Now, disregarding the non-fundamental discriminants we are left with -4 and
-8, the even discriminants of the quadratic forms ax? + bxy + cy® with class number one. As
you can see, the modern version is substantially more involved.

Another curiosity of Gauss’ representation of forms is that he never insists on the relative
primality of their coefficients. For instance, we currently consider the following forms

622 + 4xy 4+ 10y* ~ 322 + 22y + 5¢/°

to be equivalent, since they differ by a multiple. Instead, Gauss characterizes these forms as
having different orders. He defines the order of a form to be the greatest common divisor of
the coefficients. Specifically, the ged(a,b/2, ¢) so as to maintain the parity of his zy coefficient
since his forms are of the form ax? + 2bxy + cy?. So Gauss arranges the forms as orders,
genera, and classes. In [Cox89], Cox points out that this is reminiscent of the way in which
Carl Linnaeus, a noteworthy botanist and zoologist from just before Gauss’ time, classified
biology. It doesn’t seem unlikely that this is the origin of Gauss’ terminology.

1.2 Overview

In this paper we examine some of the developments concerning the Gauss class number prob-
lems and build a solid understanding of the class number. First we will develop some back-
ground knowledge necessary to understand the problem, specifically the theory of quadratic
forms and quadratic fields and how the class number is represented in each. The current
form of Gauss’ conjectures will not be formally stated until this groundwork is set. The class
equation will then be thoroughly examined in order to illustrate the connection between the
class number and L-functions. It is assumed that the reader has basic knowledge in abstract
algebra and complex analysis. The rest of this chapter will be concerned with understanding
binary quadratic forms.

1.3 Class of a Binary Quadratic Form

Impressively, Gauss had discovered and proved that binary quadratic forms of a particular
negative discriminant act as a group. It is interesting to note that Gauss discovered this
relationship before an explicit definition of a group had even been formalized.



Definition 2. A binary quadratic form
fla,y) = ax® + bay + cy?

is called positive definite if f(x,y) > 0 for all (x,y). Similarly f(z,y) is called negative
de finite if f(z,y) <0.

Note that if the discriminant of a form is negative, b*> —4ac < 0, the form is either positive
or negative definite, since by a simple square completion we get that

(o3 - a0 (1)

an expression whose sign is based completely on a. We will only be concerned with positive
definite forms, so we require a to be positive.

az® + bry +cy’ = a

Definition 3. Two forms f(x,y) and g(z,y) are equivalent if f(z,y) = g(a,b) where
(a,b) = L(x,y) for L € SL(2,Z). If L has determinant +1 we say f and g are properly
equivalent. We denote the set of these equivalence classes by C(d).

Now notice, if f(z,y) is of discriminant ¢ and g(x, y) is of discriminant d are two equivalent
forms by the transformation f(z,y) = g(az+Sy, yr+Jy), then we can compute a relationship
between the discriminants

c=(ad — p7)%d.
So equivalent forms always have the same discriminant since the determinant of the trans-
formation is (ad — By) = £1. This is a very important observation since we will be looking
at how forms of a particular choice of d behave. For a given discriminant, we will potentially
have forms that are not equivalent. The following discriminant will reoccur in examples
because its properties are fairly simple, but non-trivial.

Example 1. Consider the following two forms of discriminant d = —20.
2% + 5y
22% + 2xy + 31°.

We claim that these two forms are not equivalent. To see this consider the transformation

(O‘ 5) € SL(2,7)

oA
of x and y for form (1.1). This will result in
(57° + a?)z? + (2a8 + 1067)xy + (56 + 5%)y°.

Notice these coefficients will not match up with the coefficients of (1.2) as long as «, 3,7, €
7.



We will refer to all equivalent forms of a particular discriminant as being in the same
equivalence class, or just class. This equivalence is an equivalence relation. In fact, our
modern term “equivalence class” originates from Gauss’ reference to classes of equivalent
forms[Cox89]. We will denote the number of such classes for a particular discriminant d by
h(d), the class number for quadratic forms.

1.4 Group Structure of Quadratic Forms

One of the amazing properties of quadratic forms of discriminant d is that they form a group!
The group operation is quite bizzare and arises from the necessity for the discriminant to
remain unchanged.

Definition 4. A form ax? + bxy + cy? is a reduced form if |b| < a < ¢, and b > 0 if either
a=cor b =a.

Theorem 1. [Cox89] Every primitive positive definite form is properly equivalent to a unique
reduced form.

It is interesting to note Gauss’ wording in artical 175,

If among all the reduced forms of a given [discriminant], we reject one or the
other of the pairs of forms which are properly equivalent without being identical,
the remaining forms have the following remarkable property: that any form of
the [discriminant] will be properly equivalent to one of them and indeed only to
one ... [tJhus ... all forms of the same [discriminant| can be distributed into as
many classes as there are remaining forms.[Gau66]

Gauss then goes on to establish many other relationships between forms of a given dis-
criminant, and finally comes about to his formulation of a group relationship between classes.
The modern formulation is as follows.

Theorem 2. [Coz89] If d <0, d=0,1 (mod 4), f(z,y) = ax® + bxy + cy* and
g(z,y) = d'x* + Vay + 'y? such that f and g both are of discriminant d, then

/.2
= + Bxy +
(f*9)(x,y) =ad'z Y+ Y

where
0 < B < 2ad

B=b (mod 2a)
B=1V (mod 2d’)
B*=d (mod 4aa’)

defines an abelian group operation on the set of positive definite quadratic forms C(d) under
the equivalence relation noted above. The order of C(d) is the number of classes, denoted
h(d).



A quick computation confirms that f x g is also of discriminant d. Our identity elements
for a particular d are known as the principal forms which can be represented as either

2?2 — (d/4)y? if 4|d
?+ry+((1—d)/4)y*> ifd=1 (mod 4).

We call such a form a principal form.
Notice that in the hypotheses of Theorem 2, we have d = 0,1 (mod 4). The reason for
this is very simple,

d = b —4ac
= b (mod 4).

So we have d as a quadratic residue modulo 4, thus d = 0,1 (mod 4).

Example 2. In order to illustrate the multiplicative structure on C(d) we look at forms
with d = —20. Consider f(x,y) = 22 + 2xy + 3y* and the principal (identity) form,
i(x,y) = x* + 5y*. We first determine our value for B.

0< B<4

B=0 (mod 2)

At this point B = 2. The other two relationships of B are not even needed to find the unique
value of B in this case. So we have,

22—(—20)y2
4.2-1
= 2% + 22y + 3y?

= f(xay)

Unfortunately, Gauss’ description of this group relation is very long and complicated,
taking up multiple sections in his book. As you have seen, the modern formulation is very
awkward, even with the benefit of modern language. Gauss also points out in [Gau66] the
fact that this group can be written as a direct product of cyclic subgroups!

(f*i)(z,y) = 212 + 20y +

1.5 Genera of Binary Quadratic Forms

We will not make much use of genus theory in this paper, but will make a few statements
about it for completeness. When determining the class of a particular discriminant, we are
specifically interested in how the coefficients of the form behave. An alternative, and very
natural method of characterization arises from observing how the forms act when evaluated
at values of (z,y). For the following, let U(R) be the units of the ring R.
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Definition 5. When a form f(z,y) is evaluated at (xg, o) where xy and y, are relatively
prime, we say f properly represents the integer M = f(xo,yo).

Curiously, the integers f properly represents modulo d will always be elements of the
multiplicative group U(Z/dZ).

Definition 6. Two forms f(x,y), g(x,y) of discriminant d are of the same genus if the values
they properly represent over the integers contained in U(Z/dZ) are the same.

Example 3. We will again use d = —20 which has two classes, represented by 1.1 and 1.2
which are restated below for convenience.

2% + 5y
227 + 2xy + 3y°

By evaluating these at various points, you can see that the only elements properly represented
in U(ZJ20Z) are {1,9} for 1.1 and {3,7} for 1.2. Notice that for D = —20 we have not
represented all elements of U(Z/20Z).

Theorem 3. [Cox89] The values of the principal form of discriminant d properly represent
a subgroup of U(Z/dZ), and the values properly represented by any other form of the same
discriminant will be a coset.

Notice that this is true in the example, since our principal form 1.1 properly represents
{1,9} which is a subgroup of U(Z/dZ), and 3{1,9} = {3, 7} is the coset properly represented
by 1.2.

Theorem 4. [Cox89] All genera of forms of discriminant d consist of the same number of
classes, and the number of genera is a power of 2.

Again, you can see this from the example, since there are 2! genera. As stated before,
these properties are quite interesting, but will have little to do with the remainder of this

paper.



Chapter 2

Connection to Quadratic Fields

Many of the tools necessary to understand the Gauss class number problem come about by
viewing it in terms of quadratic fields rather than binary quadratic forms. In this chapter
we will use some tools from algebra to form an alternate picture of the class number.

2.1 Basics of Quadratic Fields

Definition 7. A complex quadratic number field is a field @(\/E) where d < 0 is square-
free.

We will use these quadratic fields to understand quadratic forms, so in the end we will
be particularly interested in d when it is a fundamental discriminant. We are particularly
interested in a generalization of the idea of the integers, Z in Q, to the algebraic integers,

Od in Q(\/E)

Definition 8. The minimal polynomial for an element « over a field R, f,(x) € Z[z] is the
unique irreducible monic polynomial such that f,(a) = 0.

Let’s first look at some properties of Z in Q.

Example 4. Notice that for any element o of Z, its minimal polynomial in Z[z] will simply

be

falx) =2 — .
This is clearly an element of Z[x]. Now, suppose that « is an arbitrary element of Q other
than 0, say o = g where (y,0) = 1. We will show that if o is a zero of some monic

polynomial in Z[z|, then o« must be an integer. Say « is a zero of the monic polynomial

n

Z cix' € Zlx],

1=0

with ¢, = 1. Then we must have

0= Z Ciﬁi’yn_ia

=0



by multiplying both sides by v™. We can write this as

so vy must divide 3" since we have ged(vy, 3)=1. We must then have v|3, and it must be true
that v = 1. Thus o must be an integer.

Definition 9. For a in Q(v/d) let f,(z) be the minimal polynomial of o over @, then « is
an algebraic integer if f,(x) is an element of Z[z].

Theorem 5. [IR90] The algebraic integers, Oq, form a subring of the quadratic field Q(\/E)
Theorem 6. [IR90] If d = 2,3 (mod 4) then Og = Z(\/d). If d =1 (mod 4) then
Od =7 (1+2\/g)

A necessary tool for understanding the way in which these integers act is a norm. We
will define our norm,

N:Z(Vd) — Z

b
’ N(a+bVd) = (a+ bVd)(a — bVd) = o — b*d.

Now, the norm is multiplicative, which will allow us to determine if elements are irreducible.
Notice if
N(a) = ab

with a, b prime, but there does not exist an z such that
N(z) = a,

then we must not be able to factor a. So « along with all elements of norm ab must be
irreducible. Before we put this norm to use, we need to establish some terminology.

Definition 10. A zero divisor is an element a # 0 such that ab = 0 for some b # 0

Definition 11. An integral domain is a commutative ring with unity that contains no
zero-divisors.

Definition 12. An integral domain in which every ideal is principal, is a principal ideal
domain.

Definition 13. An integral domain in which each nonzero, non-unit element can be factored
uniquely (up to associates) as a finite product of irreducibles, is called a unique factorization
domain, or UFD.

Notice that Z behaves rather nicely as a subring of Q in that it is a UFD. Ideally, we
would hope that each Oy could be treated as a UFD. Unfortunately, this is not always the
case.
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Example 5. Consider,

Q(V-5)

which has a ring of integers

O_s = Z[vV—=5).

Notice the element 6 can be factored in two different ways.

6 = 23
= (1-V=5)(1+V-5h)

Now, any element of O_5 will have norm
N(a + bv/—5) = a® + 5b
which cannot be 2 or 3. So elements of norm 6 are irreducible, and we have

N1-v=5) = 6
= N(1++v=5).

Also, notice
N(2)=2-2

and there are no integers ¢, and f such that
A +5f=2.

So 2 is irreducible since it is of norm 4. Similarly, 3 is irreducible. So factorization into
wrreducible elements is not necessarily unique.

2.2 The Ideal Class Group

We determined earlier that the class number for quadratic forms was the order of the group
C(d). In a similar fashion, we will identify a group structure in quadratic fields using ideals.
Notice we have a few ways of to determine which quadratic number fields have algebraic
integers that form a UFD.

Theorem 7. [DF04] If R is a PID, then R is a UFD.
Theorem 8. [DF0/] If R is a Fuclidean Domain, then R is a UFD.

One additional method for showing that Oy is a PID, and thus a UFD for a particular d
is by looking at its ideals under the following equivalence relation.

Definition 14. Let A, B C O, be ideals. We say A and B are equivalent, denoted A ~ B,
if there are nonzero elements, «, 3 of O4 such that (o)A = () B where («) and () are the
ideals generated by « and (3.

11



Also, we can derive an equivalent and more descriptive way of writing (o)A = (8)B by
introducing the following definition.

Definition 15. We say F' C @(\/c_l) is a fractional ideal if there is a non-zero algebraic
integer 3 € Oy such that SF is an ideal of O,.

This is a very natural idea which allows us to define <%) as the fractional ideal such that

i(3)-o.

Now we can rewrite («)A = ()B in the form

()1

The set of these fractional ideals forms a group under ideal multiplication.

Definition 16. Let F,; be the group of fractional ideals of O4, and By C F; be the subgroup
containing all the principal ideals. The ideal class group of Q(v/d) is

Hy = Fy/By.

We denote the order of this group by hg, known as the class number for quadratic fields.
Notice that O4 acts as the identity element of the class group. Now, if h; = 1 we have
A ~ Oy for all ideals A C O4. Thus,

giving us that,

So every ideal is principal. This gives us that whenever hy = 1,0, is a UFD. We also have
the converse, that every O, that is a UFD is also a PID, and thus hy; = 1 by the following
Theorem. Recall that the norm of an ideal is defined to be

N(A) = |0a/A]
Theorem 9. If Oy is a UFD then O4 1s a PID.

Proof. Assume O, is a UFD and A is one if its prime ideals. Clearly N(A) is an integer and
thus an element of Oy. Since Oy is a UFD we can factor N(A) = ay - as - - - a,, uniquely. Also,
since the a; are irreducible, they are prime, since Oy is a UFD. So, (N(A)) = (a1)-(az)---(an).
Notice, if for x in O4, N(A)x is an element of A by definition of N(A). This gives us that
N(A) is an element of A. Thus,

12



(a1) - (a2) - - - (@) = (N(A))
c A

Since A is prime we have that (a;) C A for some i < n, and (a;) is also prime and thus
maximal so (a;) = A. Thus A is principal and Oy is a PID. O

The problem of showing that a particular Oy is a UFD is thus reduced to showing that
hq = 1. We will need the following theorem later on.

Theorem 10. [IR90] Let p be an odd prime. Then in Oy we have,

() if

(p) =1 (pa+Vd)(p,a—Vd) if

(p Vd)? if

This allows us to write a multiplicative function for the number of ideals in O, of norm

m which we will denote 7,, and discuss in more detail in chapter 3. We will also need to
understand the units of Oy.

Theorem 11. [[R90] The units Uy of O4 are
(£1,£v/—1}  ifd=-1
Ug =< {*1,dw,+w?} ifd=-3
{£1} else

=-1
=1,a€Z,a>=d modp
=0

"Vl Bia Wi

where w = _HT V=3

So in almost all cases, we will have only 2 units and of greater importance, we never have
infinite units.

2.3 Modern Gauss Class Number Problem

So far we have looked at binary quadratic forms, and quadratic fields. We saw Gauss’
group of quadratic forms of a particular discriminant, C'(d), whose order we called h(d). We
also looked at the ideals of the ring of integers for quadratic fields, Hy, and noted a group
structure with order hy. In the following theorem we show a striking relationship between
these groups.

Theorem 12. [Cox89] For a fundamental discriminant d < 0 the map ¢ : C(d) — Hy

defined by
—b+ Vb — 4ac)
’ 2a

d(az® + bxy + cy?) = (a

1S a group isomorphism.
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This result is quite fantastic in that it shows h(d) = hy. From here on we will simply
refer to the class number as h(d), noting this encompasses both contexts. We can now state
a few of the Gauss class number problems in the modern terminology.

Modern Gauss Class Number Problems
1. liminfy_,_ h(d) = oc.
2. For d <0, h(d) =1 if and only if d € —3,—4, -7, -8, —11, —19, —43, —67, —163.
3. For d < 0, find all d such that h(d) = n for small n.

4. There are infinitely many d > 0 such that h(d) = 1.

The first part of Gauss’ conjecture was solved by Hans Heilbronn in 1934[Hei34]. Prior to
this contribution, Hans was a student at Gottingen where he studied Number Theory under
Landau. In 1933, one year before providing the proof, Hitler came to power in Germany.
Shortly after, the Civil Service Law was passed. This called for all “non-Aryan civil servants”
to be retired, which included Heilbronn. Luckily, the University of Bristol took him in and
provided a small salary which allowed him to continue his work. Hans remained at Bristol
for 18 months, where he proved that h(d) — oo as d — —oo. He was able to accomplish
this by building on the ideas formulated by Deuring, Mordell and Hecke. While at Bristol,
Hans began to collaborate with Edward H. Linfoot, one of his Mathematics Lecturers. At
this time, nine quadratic fields of class number one were known. Together, Heilbronn and
Linfoot were able to show that there could be at most one additional such field.
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Chapter 3

Connection to Analytic Number
Theory

3.1 The Dirichlet Class Number Formula

In this section we will apply some analytic number theory to gain some insight into the class
number of quadratic fields. Our goal will be to expose a connection between an L-function
and the class number known as the Dirichlet Class Number Formula. This connection is what
allows us to use modern analytic tools to approach Gauss’ problems. This will be done by
first relating the Riemann zeta function to the Dedekind zeta function through an L-function
by examining properties of complex latices and Euler products. Recall the Riemann Zeta
function is the complex valued function,

)=

ns’
n=1

If we look at ((s) for real values s, we can see

/dﬁ§<(s>§1+/ de
1 X 1 x®

1 s
< <
3—1_«8)_3—1

and so,

giving that,
1 <(s—=1)((s) <s.

So as s — 17, we have (s — 1)((s) — 1, giving us that ((s) has a simple pole at 1 with
residue of one.

Definition 17. A Dirichlet series is a complex valued function of the form
F(s) =) fm)m™
m=1

15



where f is defined over the positive integers (arithmetic).

Definition 18. A Dirichlet character x4(n) is a multiplicative arithmetic function such that
Xa(n) = xa(n + d) for all n, and if ged(n,d) > 1 then y4(n) = 0, otherwise x(n) # 0.

Definition 19. An L — function or L — series is a Dirichlet series defined by
Lixars) = 3 xalm)m™
m=1

for a Dirichlet character yq(m).

We will be primarily concerned with

whose Euler Product can write as

s =I1(=(5)r)

where p is prime and Re(s) > 1.

We will examine the Dirichlet series with f(z) = n,, the number of ideals of Oy of norm =
from the end of Section 2.1. Since 7, is the number of ideas, for a particular norm, we know
that it must be multiplicative. We will be attempting to relate the L4(1) to h(d), so from
here on we will restrict our variable s to R. For the remainder of this chapter, we frequently
borrow results from [Wes04], sometimes without proof if appropriate. First, we look at some
partial sums to build up a nice relationship to the class number. Let

M
A=
m=1

As before let h(d) denote the class number of Q(v/d). Let w be the number of units in Og,
which are finite from Theorem 11, and let 7,,(C') be the number of ideals in a class C' with

norm m. So clearly, we have,
Nm = Z 1 (C)

where we sum over each class of discriminant d. Also, define

Au(C) =) 1a(0).

Now, lets focus our attention on the class of principal ideals, C,. Let b,, be the number
of elements of Oy with norm m. We know that each element of O, has w associates, so we
can write

WNm (Cy) = by

16



Consider

M
m=1
Notice,
BM = UJAM(CO)

We will estimate B, by viewing Oy as a lattice in the complex plane. The following theorem
will allow us more leverage from this point.

Theorem 13. In the complex plane, let L = {(«, 3) be a lattice, let D, be a disk centered
at the origin of radius t, and let A be the area of the parallelogram formed by 0, o, 3, and
a+ 3. Forallt > 1, there exists a C' such that,

t2
‘ T <ot

LN Dy ——
LnD| -5

Proof. For a given t, let A\ € L N D;, and let Py be the parallelogram based at A. Let
1(t) = |L N Dy, let d(t) = #{\| P\ C D;}, and let s(t) = #{\| P\ N D; # 0}. So,

[(t) < d(t) < s(t).

In addition,
d(t)A < 7t?,

and
7t < s(t)A,

since the area of D, = 7t?. Now letting 6 be the distance along the diagonal of Py, we get
that Py, C Dy,s for any A\ € LN D,. Thus,

m(t+ 6)?
—

Also notice that if Py N D;_s # () then we have that Py C D, so

I(t) <d(t+96) <

2
TN - ) <1,
A
Thus,

l(t)—ﬂ—tz < T2t + 62

Al = A4

T
< (2 2
< T+ 5%

< (.



To make use of this theorem notice that we can look at Bj; as the set of lattice points
of norm N(a) = |a]?* < M, so that

By ={a € Oy |a| < VM}.
Our theorem then gives us that a constant k exists such that
‘BM - %M‘ < &V
We can also say that for wk’ =
’AM(C’O) - i]\/[‘ < K'vVM.
Aw
Now, although this is only clear for the class of principal ideas, we can extend it to all classes.

Theorem 14. For any ideal class C, there exists a constant k such that
‘AM(C) - LM‘ < kv/M.
Aw

Now this is where the connection to the class number comes in. By summing over all
classes of ideals in the algebraic integers, of which there are h(d), we get

h(d
‘AM - ig}”M‘ < kVM.
Theorem 15. For a given prime p,
9 n (1 _pis)72 Zf (g) =1
p" —s\—=1 ;£ (dy _
i (L=p™) i (5)=0
n=0 d

where (%) is the Legendre Symbol.
Proof. First, recall that 7, is precisely the number of ideals of norm p in the ring of integers
of Q(v/d). In the case where (%) =1, we have that any ideal of norm p’ will be of the form
A'B’~% with 0 <4 < j where A and B are the prime ideals of norm p (since there are only
2). So we have 7,; = j + 1. Now notice,

0 ' d <
G+ = —ud o
> - ;
u

j=0
_d
T dul—u
B 1
- (1-w)p?
Substituting v = :z% gives us the first case. The other cases follow similarly. m
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We will also need the following results and again refer the reader to [Wes04].

Theorem 16. Let (a,) be a real sequence. If there exist real numbers ¢ and r > 0 such that

M
> an
m=1

<cM"

then the series

E

3

0. 9]
a
Z s
m=1
converges for all s > r.

Theorem 17. If (a,,) is a multiplicative sequence such that there exists ¢ > 0 with | Z%zl | <

cM for all M, then for s > 1,
A Ay
I
Also, if (an) is completely multiplicative and |a,| < p for all p, then
Seem(-)
o L P

Now, we can start our discussion of the Dedekind zeta function. This is defined to be
the Dirichlet series with arithmetic function 7,,, so that we have,

N
Ca(s) = 2

Notice that from Theorems 15 and 17 we can write this as
Gs)= J[ a=pH> J] @=p" ] @-p>)"
p,(%)zl p7(%):0 pv(%):_l

Theorem 18. The Dedekind zeta function (; converges for all s > 1 and has a simple pole
at s = 1 with residue Z_Z'

Proof. From Theorem 14 we can show that

Ay < (hl(éld)ﬂ

w

vE) 0
for M > 1. Theorem 16 then gives us that (4(s) converges for s > 1. Now we will look at a

new Dirichlet series
= h(d)m s
hs) =2 (W‘%)m '

m=1

19



Notice that

>

m=1

h(d h(d —
Aw Aw
so it must converge for s > % by Theorem 16. By breaking the sum up we get that for s > 1,

h(d)m
().

h(s) = Ca(s) —

We saw earlier that ((s) has a simple pole at s = 1, so as s — 17, we see that (4(s) — 0.
To show that (4(s) has a simple pole at s = 1 with the stated residue, we notice

: : h(d)m .
1 —1 = 1 -1 1 —1
lim (s =1)¢a(s) = lim (s — 1)h(s) + —= lim (s = 1)¢(s)
h(d)m
=0 1
+ W
[
Theorem 19. For s > 1,4(s) = ((s)La(s).
Proof. The most convenient method of approach is to use Euler products. We have,
Gs) = I a=p2 [T =p" 1] a-p)"
p,(%):l pu(%):() p,(%):—l
= [Ja-p" J] @=p" J] @+p )
P p(f)=1 p,(4)=-1
—s\—1 d —s\—1
= [Ja-p)"'[JO- ™)
P p p
= ((s)La(s)
O

We are now able to state the class number equation.

Theorem 20. The Class Number Equation
For square-free d, we have,

T ifd = 1(4).

La(1) = {% if d=2,3(4)

Proof. First notice we have
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A V—dif d=2,3(4)
Ll ifd=1(4).

2

Now, consider
La(1) = lim Lq(s)
o Gals)
~ A
(s =1)C(s)
= T
h(d)m
A-u

]

This relationship is fully illustrated here because it is what allows an understanding of
progress in the class-number problems. We clearly have the L-series related to the class
number in Theorem 20. So now we can begin to incorporate our knowledge of L-series to
gain leverage on the class-number. In particular, it illustrates our ability to incorporate the
generalized Riemann Hypothesis.

3.2 Divergence of the Class Number

The first complete proof that liminfy . ., h(d) = co was given by Hans Heilbronn in 1934.
The proof was based on a rather peculiar usage of the generalized Riemann hypothesis. The
generalized Riemann hypothesis is still without proof so it may appear odd that one could
prove a theorem using an unknown hypothesis. The Generalized Riemann Hypothesis claims
that:

All zeros of L(x, s) have real part o < 3.

In order to do this, Heilbronn used a theorem proved by Hecke in 1918 which equivalently
states,

Theorem 21. [Hei34] If Lq(s) # 0 for Re(s) > & then limg_._o h(d) = oc.

Notice that if the generalized Riemann hypothesis is true then L4(s) will most certainly
have no zeros with real part greater than % So Hecke’s theorem shows that if the generalized
Riemann hypothesis is true then the class number goes to infinity as d — oco. In 1933
Deuring proved a theorem that pointed mathematicians in a strange direction. His theorem
is equivalent to the following.
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Theorem 22. [Hei34] If ((s) has at least one zero for Re(s) > 1 then
liminf h(d) > 2.

d——o0
At this point the picture gains a bit of clarity. Notice Deuring is saying that if the
original Riemann hypothesis is not true then the class number will at least begin to take
off. If only this theorem could be strengthened then perhaps the desired property of class
numbers would be established. The next contribution was made by Mordell in the same
year. In his paper he states,

I prove a little more than Deuring does, namely, if [h(d) is] a given number,
for an infinity of d, then the Riemann hypothesis is true.[Mor34]

Notice that Mordell shows a generalization of Deuring’s theorem where the liminf of h(d)
increased from 2 to oo.

The direction of these ideas is so magnificent that they deserve full accentuation and clar-
ification. Notice that first Hecke shows if the generalized Riemann hypothesis is false then
we have limy_._ o h(d) = co. Then Mordell shows that if the original Riemann hypothesis
is true then we have limy_,_ h(d) = oco. If Mordell’s theorem could only be strengthened
to encompass the generalized Riemann hypothesis, the property of class numbers would be
established independent of the Riemann hypothesis. As stated earlier, in 1934 Heilbronn
puts together the final piece.

Theorem 23. [Hei3}] If there is at least one real character x of modulus m (principal or
not) so that

L(p.x) =0
with Re(p) > 3 then limy_._ h(d) = co.
Throughout his paper, Heilbronn assumes that that there exists some class number H
such that h(d) = H for infinitely many d and proceeds to establish a contradiction. His

proof relies on a few key lemmas that we will briefly explore[Hei34]. Let o be the real part
of s, and o, is such that 3 < oy, < Re(p) < 1.

Lemma 24. Foro,, <o <2,s#1,

Lo(9)Lals) = (29 J[(1 = 57) S xta)a + o] +

plm

o))

as d — oo, where a runs through the minima of the H forms of discriminant d.

Here the “minima of the H forms of discriminant d” refers to the minimum value obtain-
able when evaluating a quadratic form at non-zero integer values.

Lemma 25. If a runs through the minima of the H quadratic forms belonging to d, then if

1
o23,

|ZX = H2+0(1)
for d — —o0.
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Heilbronn then evaluates the inequality given in the first lemma at the zero of his L-
function p, and lets d — —oc:

0 = lim Lo(p)La2(p)

d——o0

= lim ¢((2s) [[(1=p7*) D x(a)a™”

d——o0
plm

Now since 3 < Re(p) < 1, we can say ((2s) [T (1 - p~27) # 0. This leaves us with

- - _
dEI_noogx(a)a = 0.

This contradicts the second lemma.

So regardless of whether or not the generalized Riemann hypothesis it true, it must follow
that limg_,_o, = 0.

An interesting observation of Heilbronn’s theorem was made by Chowla during that same
year|Cho34]. He discovered that a simple extension of Heilbronn’s first lemma frees his proof
from relying on Hecke. He noted that evaluating the inequality at m = 1 gives us

C(s)Li(s) = ¢(25) Y a™" +o(1).

Here, o(1) is simply the “little 0” function which simply means some value bounded below

by 0 and above by a constant. Now for the strip % < s < % we know that ((s) < 0 and

5
clearly ((2s) >, a~° + o(1) is positive, so Li(s) < 0. We also know that L;(1) > 0 so there
must be some 2 < s < 1 such that L;(s) = 0. Now remember, Heilbronn’s theorem is shown
assuming that limg, o h(d) # oo. Thus, if L;i(s) # 0 then lim;,_o h(d) = oo, which takes

the place of Hecke’s theorem.

3.3 Complete Determination of Class-Number One

Although Heilbronn was able to show that there are only finitely many discriminants of class
number one, his proof was ineffective. By this we mean that we are unable to determine
exactly when or how the class number takes off, only that its liminf does in fact tend
toward infinity. So Heilbronn’s paper, although important, sheds no light on the problem of
determining how many discriminants are of class number 1. It is known that there exists at
least 9 discriminants of class number 1[DF04], namely

{-3,—4,-7,—8,—11,—19, —43, —67, —163}

As we saw in a previous example, one can easily show that a discriminant, such as —5
for example has class number larger than 1 by showing that the associated quadratic field
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Q(v/=5) has elements in its ring of integers Z(v/—5) that factor into irreducibles in more
than one way. On the flip side, one can also show that a particular discriminant has class
number 1 by showing it gives rise a UFD of algebraic integer, as in Chapter 2. Curiously
enough, the first person to make significant progress toward proving that this list of 9 dis-
criminants was complete was a high school teacher Kurt Heegner. Heegner’s specializations
were mathematics and radio engineering, for which he has a handful of patents. In 1952 he
claimed to have a proof that no other discriminants of class number 1 exist other than those
listed. Unfortunately, his paper was not widely understood, and was considered to be incor-
rect, or at best incomplete. His argument used modular forms, and was based on showing
that a particular 24 degree polynomial had a 6 degree factor over algebraic integers. He uses
this to derive a set of Diophantine equations that have solutions for d, when h(d) = 1[Sta69]
Unfortunately, his approach was not widely understood, and was considered incomplete if
not completely wrong. It wasn’t until 1967 that this gap was filled by Stark in the first
paper of the Journal of Number Theory[Sta69]. Unfortunately, Heegner died only 2 years
prior to the completion of this paper, never receiving the true credit that he deserved. In
October of 1966, the mathematics journal received the first complete proof of the complete
determination of class number 1 (negative) discriminants. In his paper, Linear Forms in
the Logarithms of Algebraic Numbers[Bak68], A. Baker developed some new ideas in his
Theory of Transcendental Numbers by proving the following.

Theorem 26. There is an effectively computable number
C=C(n,aq,....ay, k,d) >0
such that for all algebraic numbers [y, ..., B, not all 0, with degrees at most d, we have
|B1logan + ... + Bploga,| > Ce(legH)"
where H denotes the mazimum of the heights of (1, ..., Bn.

He then notes that,

[I]t follows from work of Gelfond and Linnik ... that there are only nine
imaginary quadratic fields with class number 1.

Interestingly, in November of 1966, one month after Baker’s paper was received, the
Michigan Mathematics Journal received a completely different proof of this determination
by Stark in the paper, A Complete Determination of the Complex Quadratic Fields of Class-
Number One[Sta67]. In this paper Stark assumes that the class number h(d) = 1 and uses
two L-functions to derive a set of Diophantine equations in terms of a sufficiently large
discriminant d. Stark then shows that these equations are valid for d > 200, and that this
forces a contradiction. Thus if A(d) = 1 we must have d < 200, completing the proof. It
should be pointed out that the Diophantine equations that Stark derives happen to be the
same equations that Heegner used in his incomplete paper. Also recall that it was Stark who
completed Heegner’s proof in a 1967 paper. In his defense, Stark notes that,
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It is frequently stated that my proof and Heegner’s proof are the same. The
two papers end up with the same Diophantine equations, but I invite anybody
to read both papers and then say they give the same proof![Sta07]

Unfortunately, Heeger’s paper is written in German, and an English translation is not widely
available. Even if Stark’s proof happens to have similar elements as Heegner’s proof, Stark
should receive all the credit due to a major contributor to this field, especially when one
consider that he was the first to present a method of fixing Heegner’s proof.
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Chapter 4

Further Progress

4.1 Post 1970

Some interesting results came after 1970. One interesting theorem,

Theorem 27. [Gol85](Goldfeld-Gross-Zagier) For every ¢ > 0 there exists an effectively

computable ¢ > 0 such that
h(d) > cllogld)*

For the special case (d,5077) = 1 we get h(d) > z3==log(|d|). Notice that this lower bound
is very low. Even for h(d) = 1 we only have that d < €. In this paper we have only
highlighted h(d) = 1. There has been much done in recent history dealing with class numbers
h(d) > 1. The first step was completed by both Baker and Stark when they joined forces.
They were able to completed the determination of h(d) = 2 in 1971 by using the method
of linear independence of logarithms. Oddly, there are exactly 18 complex quadratic fields

with A(d) = 2, namely
{15, 20,24, 35,40, 51,52,88,91, 115,123, 148, 187, 232, 235, 267, 403, 427}

(negatives omitted). Also, many other class numbers have been completely determined. In
1985, Oesterle found a complete list for h(d) = 3, and by 1998, h(d) < 7 and odd numbers
h(d) < 23 had been handled. [Wat04] Then in 2003 Watkins was able to find a determination
for all h(d) < 100. [Wat04] Also there has been some progress made by generalizing quadratic
fields to CM-fields, and incorporating the Modified Generalized Riemann Hypothesis. [Sta07]
It should be noted that the determination of class number 1 real quadratic fields has not yet
been solved. In fact, it is still unknown whether or not there are finitely many.

4.2 Conclusion

The story of the Class Number problems is a very interesting progression in the development
of mathematics. The roots of these developments stretch clear back to conjectures of the
great Carl Frederich Gauss who’s challenge concerning class numbers of real quadratic fields,
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It is a curious question and it would not be unworthy of a geometer’s talent
to investigate the law that governs the fact that discriminants having one class
in a genus become increasingly rare.[Gau66|

has yet to be met. On the road to solving these problems, mathematicians have made great
displays of cleverness, even forging a tool out of a hypotheses completely independent of the
theorem at hand, the Riemann Hypothesis. The questions of Gauss seem to demand the
use of nearly every tool available to number theorists, and have inspire the discovery of new
tools. It is also fascinating that the complete classification of class number 1 complex fields
was arrived at by two independent mathematicians using completely different techniques.
Not to mention that these ideas were completed and submitted only a month apart. It is
also unfortunate that Heegner was so close to a solution, but was not recognized for his
contributions until shortly after his death.
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