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Abstract. The regularized layered medium equation is proposed as a model
of voltage distribution in a medium consisting of alternating thin films of
conducting and dielectric materials. This equation is obtained from the
layered medium equation by the introduction of a regularizing perturba-
tion that takes account of the resistance at the interface between adjacent
conducting and dielectric layers. The regularized equation is an implicit
evolution equation which is shown to be well-posed, and an explicit mea-
sure is derived for the rate of decay of singularities in the initial data. It
is shown that, as the regularizing parameter approaches zero, solutions of
the initial-boundary value problem for the regularized equation converge to
the corresponding solution of the layered medium equation. This gives a
method of calculating the exact rate of decay of singularities in the initial
data for the layered medium equation.
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1. Introduction.

Multilayered structures offer potential advantages in the design of integrated
circuits (Ghausi and Kelly6), and a variety of techniques is available for the
construction of layered synthetic microstructures, which consist of alternating
layers of different semiconductors, different metals, or semiconductors and metals
(Doeher4; Dresselhaus5). One example of a device with such a structure is the
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multilayer ceramic capacitor, a common component of computer memory boards
where its functions are to divert spurious signals and to buffer fluctuations in
the power supply (Trotter13). Such a capacitor consists of around 60 to 120
alternating layers of ceramic (with a very high dielectric constant) and metal.
The appropriate setting in which to model such multilayered RC structures is
the theory of distributed networks (Ghausi and Kelly6). Bosse and Showalter2

proposed as such a model the Layered Medium Equation (LME)

− ∂

∂t

(
∂z(C(~x, z)∂zu)

)
−∂z(GV (~x, z)∂zu)−~∇~x·(GH(~x, z)~∇~xu) = F (~x, z, t). (1.1)

This represents a classical continuum approximation to a discretely layered struc-
ture. The coefficients GH , GV and C measure the distributed horizontal con-
ductivity, vertical conductivity and capacitance of the limiting heterogeneous
material obtained by letting the thickness of the layers approach 0. The un-
known, u, represents the potential in the structure with respect to a reference
level for which it is natural to take the voltage in the substrate. Since the con-
tinuum of layers is assumed to be horizontally aligned, the vertical (z) direction
is distinguished from the horizontal ~x = (x1, x2)-plane by capacitance effects.
The coefficients (GH , GV , C) can be assumed to be independent of z, as the
limiting process by which the LME is derived is effectively a homogenization in
the z-direction.

We propose in Section 2 a modification of the LME , which we call the
Regularized Layered Medium Equation (RLME). This model is distinguished from
the LME by the inclusion of resistive losses due to the (usually small) transverse
current at the interface between layers, and it thus takes account of the effect
of a lossy dielectric on energy dissipation in multilayered structures. Both the
LME and the RLME are examples of implicit evolution equations, as is shown
in Section 3 where the abstract variational formulation of these problems is
developed. It follows that these equations are well-posed with data from a variety
of spaces. In Section 4 it is also shown that a dual form of the LME is well-posed.

The two models differ in the regularity of their solutions. The LME essen-
tially has the form

∂t(∂2
zu) +4~x,zu = −F

and so we would expect it to be parabolic in ~x = (x1, x2) but to preserve regu-
larity in z. The RLME is a perturbation of the LME of the form

∂t(∂2
zu+ h4~x,zu) +4~x,zu = −F
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and so should preserve regularity in all variables. Our primary result is to make
this intuition precise by demonstrating how singularities in the initial data appear
in the solutions of the LME and RLME , and calculating rates of decay for
those singularities as t → ∞. This is achieved for the RLME in Section 5 by
reformulating it as an integral equation. Then it is shown in Section 6 that
solutions of the RLME converge to a solution of the (dual form of the) LME
as the regularizing parameter h → 0. From this is derived a decay rate for
singularities in the solution of the LME .

2. The Regularized Layered Medium Equation.

We consider the voltage distribution in a cylindrical domain, Ω = D × I, where
D ⊂ R2 is bounded and convex and I = [0, Z] ⊂ R1. Points of D will be denoted
by ~x = (x1, x2), while the variable z is reserved to indicate the vertical axis.
This domain is filled with thin, alternating, horizontal layers of two conducting
and dielectric materials. We model this multilayered structure as a continuum
of microcapacitor cells: we assume that at each point (~x, z) ∈ Ω there is a cell
consisting of a layer of conductive material and a layer of dielectric material,
both horizontally aligned, i.e., normal to the z-axis, with a resistive interface
between them. Each such cell functions as a capacitor and a resistor in series, as
shown in Figure 1, with the horizontal direction represented as one-dimensional.

Let u(~x, z, t) represent the voltage distribution inside Ω, measured with
respect to the base of Ω. Let ~JH and ~JV represent respectively the horizontal
and vertical components of the current field in Ω, induced by the voltage gradient.
Then

~∇ · ( ~JH + ~JV ) = F (~x, z, t) (2.1)
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where F represents any sources of current. By the classical Ohm’s Law

~JH = −GH(~x)~∇~xu, (2.2)

where GH is the spatially distributed, horizontal conductance of the conductive
layer, and ~∇~x = (∂x1 , ∂x2) is the gradient in the horizontal direction. In the
vertical direction, ∂zu is the voltage drop across the entire cell, and we introduce
v(~x, z, t) to represent the voltage drop across the purely capacitive component
of the cell, as shown in Figure 1. If GV is the spatially distributed vertical con-
ductance (modeling leakage through the dielectric layers) and g the conductance
of the interface between layers, represented as the resistance in Figure 1, then
Kirchoff’s Laws give us that

~JV =
(
−GV (~x)∂zu− g(~x)(∂zu− v)

)
~e3. (2.3)

The new variable, v, is related to uz via the vertical capacitance effect in the
cell:

C(~x)∂tv = g(~x)(∂zu− v). (2.4)

Combining (2.1)–(2.3) and using (2.4) to eliminate v, we get:

∂

∂t

[
−C(~x)∂2

zu− h(~x)~∇ ·G(~x)~∇u
]
− ~∇ ·G(~x)~∇u = (I + h(~x)∂t)F (2.5)

where I represents the identity operator, h(~x) = C(~x)/g(~x) and we have written:

~∇ ·G(~x)~∇ ≡ ~∇~x ·GH(~x)~∇~x +GV (~x)∂2
z .

The equation (2.5) is what we call the Regularized Layered Medium Equa-
tion (RLME) with regularizing parameter h. Using the same notation, the Lay-
ered Medium Equation of Bosse and Showalter2 can be written

∂

∂t

[
−C(~x)∂2

zu
]
− ~∇ ·G(~x)~∇u = F, (2.6)

and we note that, formally at least, the LME is recovered from the RLME as
h→ 0 (i.e., as the interface resistance, 1

g → 0).
For boundary conditions, we shall assume that the boundary of Ω is divided

into complementary parts, Γ0 and Γ1, with Γ0 = D × {0}, the base of the
cylindrical domain, and shall prescribe the voltage on Γ0 and the outward normal
component of current on Γ1:

u(s) = 0, s ∈ Γ0

G(s)~∇u(s) · ~n(s) = J(s), s ∈ Γ1, t > 0,
(2.7)
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where ~n(s) denotes the unit outward normal. The initial charge distribution in
the multilayered structure is prescribed by

C(~x)u(~x, z, 0) = C(~x)u0(~x, z), (~x, z) ∈ Ω. (2.8)

3. Abstract Variational Formulation.

Next we develop the variational statement of the LME and RLME and demon-
strate that both are examples of implicit evolution equations. With D, I,
Ω = D × I and Γ0 as in Section 2, denote by H1(Ω) the Sobolev space of
functions in L2(Ω) for which each first order distributional derivative belongs
to L2(Ω). The trace operator, γ : H1(Ω) → H

1
2 (∂Ω), extends the notion of

boundary values to all functions in H1(Ω). For details see Adams1. Define the
spaces

VA ≡ {v ∈ H1(Ω) : γv = 0 on Γ0}

VB ≡ {v ∈ L2(Ω) : ∂zv ∈ L2(Ω) and v(~x, 0) = 0 for a.e. ~x ∈ D}

VC ≡ {v ∈ L2(Ω) : ∂xjv ∈ L2(Ω), j = 1, 2}.

These are Hilbert spaces with inner products given respectively by

(u, v)A ≡ (u, v)H1(Ω)

(u, v)B ≡ (u, v)L2(Ω) + (∂zu, ∂zv)L2(Ω)

(u, v)C ≡ (u, v)L2(Ω) + (∂x1u, ∂x1v)L2(Ω) + (∂x2u, ∂x2v)L2(Ω).

Finally, we let H ≡ L2(Ω) and write the L2 inner product as ( , )H .
Note that V ≡ {v ∈ L2(Ω) : ∂zv ∈ L2(Ω)} ∼= L2(D,H1(I)), the space

of Bochner integrable functions v : D → H1(I) such that
∫

D
‖v(~x)‖2H1(I) d~x <

∞. (For details of the Bochner integral see Wloka14.) The functions in H1(I)
are uniformly continuous, and so the boundary condition incorporated in the
definition of VB is meaningful.

The above spaces form a hierarchy

VB

↗ ↘
VA H

↘ ↗
VC
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where each of the embeddings is continuous and dense. We define continuous
linear operators A, B and C from the spaces VA, VB and VC into their respective
duals V ′A, V ′B and V ′C by:

Au(v) ≡
∫

Ω

{(
GH(~x)~∇~xu

)
· ~∇~xv +GV (~x)∂zu∂zv

}
d~x dz, u, v ∈ VA

Bu(v) ≡
∫

Ω

C(~x)∂zu∂zv d~x dz, u, v ∈ VB

Cu(v) ≡
∫

Ω

(
GH(~x)~∇~xu

)
· ~∇~xv d~x dz, u, v ∈ VC

We shall assume that C,GH , GV ∈ C0,1(D̄) and that each is uniformly positive.
The above operators are symmetric and, by Poincaré’s Inequality, A and B are
also coercive, i.e.,

Av(v) ≥ ka‖v‖2A, ∀v ∈ VA

Bv(v) ≥ kb‖v‖2B , ∀v ∈ VB

where ka, kb > 0, while C satisfies

Cv(v) + λ‖v‖2H ≥ kc‖v‖2C , ∀v ∈ VC

for some λ > 0 and kc > 0. It follows from the Lax-Millgram Theorem (e.g.
Showalter10, p.54) that A and B have continuous inverses.

With each of these variational operators we also associate a strong (un-
bounded) operator in H as follows. Define a subspace D(A) of VA by

D(A) ≡ {u ∈ VA : ∃Ku : |Au(v)| ≤ Ku‖v‖H , ∀v ∈ VA}.

If u ∈ D(A), then Au is a linear functional on VA and is continuous in the
H-norm. Since VA is dense in H, Au has a unique extension to a continuous
linear functional on H, and this functional is represented uniquely by an element
Au ∈ H. Thus

Au(v) = (Au, v)H , ∀u ∈ D(A), v ∈ VA.

This determines an unbounded linear operator, A : D(A) → H, and we similarly
define B : D(B) → H and C : D(C) → H. A and B are bijections with
continuous inverses and so are closed operators in H. C, while not a bijection,
is a closed operator in H, and all three operators are self-adjoint with domains
dense in H. These conclusions follow from standard results (see Showalter10,
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p.77 for example). In each case, the unbounded operator is continuous in the
corresponding graph norm defined by

‖u‖D(A) ≡ ‖u‖A + ‖Au‖H .

For the particular operators that we are considering, if we assume that the
spatial domain, D ⊂ R2, is convex and that the coefficients C,GH , GV ∈ C0,1(D̄)
are independent of z, then we can use regularity theory (Grisvard8) to show
that the abstract subspaces and operators defined above can be characterized as
follows:

D(A) = {v ∈ VA : v ∈ H2(Ω) and (G~∇v) · ~n = 0 on Γ1}

Av = −~∇~x · (GH(~x)~∇~xv)−GV (~x)∂2
zv

D(B) = {v ∈ VB : v(~x, ·) ∈ H2(I) and ∂zv(~x, Z) = 0 for a.e. ~x ∈ D}

Bv = −C(~x)∂2
zv

D(C) = {v ∈ VC : v(·, z) ∈ H2(D) and (GH
~∇~xv) · ~n = 0 on ∂D for a.e. z ∈ I}

Cv = −~∇~x · (GH(~x)~∇~xv)

where ~n denotes the unit outward normal. It again follows that these subspaces
form a hierarchy of dense, continuous embeddings:

D(B)
↗ ↘

D(A) H
↘ ↗

D(C)

It is important in the following to note the regularity properties of functions
in these spaces. By the Sobolev Embedding Theorem, we have the embedding
H2(Ω) ↪→ C0

u, the space of uniformly continuous functions on Ω. Thus each
v ∈ D(A) is continuous in (~x, z). On the other hand, D(B) ⊂ L2(D,H2(I))
and hence if v ∈ D(B) then v is continuous in z but only L2 with respect to
~x = (x1, x2). Similarly, each v ∈ D(C) is continuous in ~x but only L2 in z.

We now have the background to formulate the LME and RLME as implicit
evolution equations. With the above notation, the strong form of the initial
boundary value problem for the LME becomes

B
du

dt
+Au(t) = F (t) in H

u(0) = u0,
(3.1)
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while the strong form of the corresponding problem for the RLME is

(B + hA)
du

dt

h

+Auh(t) = Fh(t) in H

uh(0) = u0,

(3.2)

where h = C(~x)/g(~x) > 0 and Fh(t) = (I + h
d

dt
)F (t). Moreover, the operator

A has the special structure, A = bB+C where b = GV (~x)/C(~x). This structure
is crucial for our analysis of the asymptotic behavior of solutions of these prob-
lems. For these equations to be appropriately well-posed, it is necessary that the
operator A be B-positive, i.e. that

(Aϕ,Bϕ)H ≥ 0, ∀ϕ ∈ D(A),

and we shall also need to assume that A is B-symmetric, i.e. that

(Aϕ,Bψ)H = (Bϕ,Aψ)H , ∀ϕ,ψ ∈ D(A).

We now show that both of these conditions are satisfied by the operators de-
fined above, provided that the distributed capacitance, C(~x), and the leakage
conductance, GV (~x), are constant, which we assume in the sequel.

Firstly, a straightforward integration by parts proves

Lemma 3.1. For any ϕ ∈ D(A) ∩ C∞(Ω̄) and v ∈ D(B),

(Aϕ,Bv)L2(Ω) =
∫

Ω

(G~∇∂zϕ) · (C~∇∂zv) d~xdz.

If D has a C∞ boundary or is rectangular, then we also have

Lemma 3.2. A
(
C∞(Ω̄) ∩D(A)

)
is dense in H = L2(Ω).

Proof. Ω has the cone property: there is a finite cone, K, such that each point in
Ω is the vertex of a finite cone congruent toK and contained in Ω. By the Rellich-
Kondrachev Theorem (see Adams1, p.144), since D ⊂ R2, I ⊂ R1 and both have
the cone property, the embeddings of H1(I) in L2(I) and H1(D) in L2(D) are
compact. We may treat B, C as operators in H1(I), H1(D) respectively. It
is immediate that B is coercive over {v ∈ H1(I) : v(0) = 0}, while C + λI is
coercive over H1(D) for some λ > 0. Since they are also symmetric, they both
have complete sets of eigenfunctions:

Cui = λiui, Bvj = µjvj

with ui ∈ C∞(D̄) and vj ∈ C∞(Ī). Then {uivj} constitutes a complete set
of eigenfunctions for A = bB + C (b constant). Thus, every function in L2(Ω)
can be approximated by a linear combination of the uivj ’s, and hence of the
Auivj ’s. �
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Proposition 3.3. If the coefficients C and GV are constant, then A is B-
positive and B-symmetric.

Both results follow easily by approximating Au, where u ∈ D(A) ↪→ D(B),
by Aϕn, where ϕn ∈ D(A) ∩ C∞(Ω̄), and then invoking Lemma 3.1.

4. The LME and the RLME are Well-posed.

With the LME and RLME both expressed as implicit evolution equations, we
can apply abstract existence and uniqueness results from Showalter10,11,12 or
Carroll and Showalter3 to show that both are well-posed in a number of different
spaces.

Theorem. Let V , W and H be Hilbert spaces with V ↪→ W ↪→ H, where
we identify H with H ′, and let L : V → V ′, M : W → W ′ be continuous
linear operators. Define D(L) ≡ {v ∈ V : Lv ∈ H} and D(M) similarly, with
L = L|D(L), M = M|D(M). Assume that L and M are coercive on V and W
respectively, that D(L) ⊂ D(M) and that

(Lϕ,Mϕ)H ≥ 0, ∀ϕ ∈ D(L).

Then, for each u0 ∈ D(M) and f ∈ Cλ(0, T ;H) with 0 < λ < 1, there is a
unique solution, u, of

M
du

dt
+ Lu(t) = f(t) in H

u(0) = u0

(4.1)

such that u ∈ C ([0, T ];D(M)) ∩ C1 ((0, T ];D(M)) and u(t) ∈ D(L), ∀t > 0.

With L ≡ A and M ≡ B, this result shows immediately that the strong form of
the LME is well-posed. The same theorem, with L ≡ A and M ≡ B + hA, also
shows that the RLME is well-posed. These results can be summarized as:

Initial Data Solution

LME u0 ∈ D(B) u(t) ∈ D(A)
RLME u0 ∈ D(B + hA) ⊂ D(A) u(t) ∈ D(A)

Recalling the characterizations of the spaces and operators from Section 3, we
see that for the LME if our initial data, u0, is in L2(Ω) with ∂2

zu0 ∈ L2(Ω),
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then we get a solution u(t) ∈ H2(Ω) for all t > 0. Thus the LME is regularizing
(parabolic) in ~x, while preserving regularity in z. In contrast to the LME , the
RLME exactly preserves regularity in all variables: with data u0 in H2(Ω), the
solution also takes values in H2(Ω). This is intuitively to be expected, since the
perturbed operator B + hA and the operator A both contain exactly the same
derivatives.

Our aim is to characterize more precisely the regularity-preserving prop-
erties of these two equations by calculating an exact rate of decay of those sin-
gularities in the data which are preserved in the solutions of the LME and the
RLME . However, the interpretation of the result of this calculation for the LME
requires a more general notion of solution than the strong solutions provided by
the above theorem. We now prove a generalization of this theorem which shows
that the dual of (4.1):

B′
du

dt
+A′u(t) = f(t) in D(B)′

u(0) = u0.
(4.2)

is well-posed. As usual, D(B)′ denotes the space of continuous linear functionals
on D(B), and the dual operators A′ : H → D(A)′, B′ : H → D(B)′ are defined
by, e.g.,

〈A′v, w〉D(A)′,D(A) = (v,Aw)H

for v ∈ H, w ∈ D(A), where 〈 , 〉D(A)′,D(A) denotes the D(A)′–D(A) duality
pairing. Since D(A) is dense and continuously embedded in D(B), the same is
true of D(B)′ in D(A)′. Recall that A and B are continuous (in the graph norm)
bijections, and hence so are A′ and B′.

Lemma 4.1. For A, B as given above, if A is B-symmetric then (A′)−1 (D(B)′) ⊂
B (D(A)) .

Proof. Since A′ is a bijection, this is equivalent to D(B)′ ⊂ A′ (B (D(A))) . Now

u ∈ A′ (B (D(A)))

⇐⇒ ∃w ∈ D(A) : u = A′Bw in D(A)′

⇐⇒ ∃w ∈ D(A) : ∀v ∈ D(A), 〈u, v〉D(A)′,D(A) = (Bw,Av)H .

Since A : D(A) → H and B′ : H → D(B)′ are bijections, given any u ∈ D(B)′,
there is w ∈ D(A) : u = B′Aw. Thus, for any v ∈ D(A),

〈u, v〉D(A)′,D(A) = 〈B′Aw, v〉D(A)′,D(A) = (Aw,Bv)H = (Bw,Av)H
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since A is B-symmetric. Thus u ∈ A′ (B (D(A))). �

For brevity write D ≡ (A′)−1 (D(B)′). The preceding lemma shows that
D ⊂ B (D(A)). We now prove the promised existence result.

Theorem 4.2. Let V ↪→ W ↪→ H be Hilbert spaces, where ‘↪→’ denotes a
dense and continuous embedding. We identify H with H ′, and let A : V → V ′,
B : W → W ′ be continuous linear operators. Define A = A|D(A), B = B|D(B)
where D(A) = {u ∈ V : Au ∈ H} and D(B) is defined similarly. Assume
that A and B are coercive, that D(A) is a dense subset of D(B), and that A is
B-positive and B-symmetric, i.e.,

(Aϕ,Bϕ)H ≥ 0 and (Aϕ,Bψ)H = (Bϕ,Aψ)H , ∀ϕ,ψ ∈ D(A).

Then, for each u0 ∈ D and f ∈ C1(0, T ;D(B)′), there is a unique solution,
u ∈ C1(0, T ;H), of the Cauchy problem (4.2). Moreover, u(t) ∈ D,∀t ≥ 0.

Proof. Recall that the graph norm on D(A) is ‖u‖D(A) = ‖u‖V + ‖Au‖H . Since
A is coercive, A is closed and D(A) is complete in the graph norm and dense in
H. Similar remarks hold for B and D(B). Suppose that un → u in D(A) and
un → v in D(B). Then un → u in V while un → v in W . Since V ↪→ W , u = v

and the identity map i : D(A) → D(B) is closed, therefore continuous (by the
Closed Graph Theorem), and D(A) ↪→ D(B). It follows that D(B)′ ↪→ D(A)′.

We solve the Cauchy problem, (4.2), in the equivalent form

du

dt
+ (B′)−1A′u(t) = (B′)−1f(t).

Let M ′ = (B′)−1A′ : D → H. We show that M ′ is m-accretive, from which the
result follows by standard theorems on semigroups (see Goldstein7, for example).

M ′ is accretive on D. Indeed, if v ∈ D then v = Bw for some w ∈ D(A)
by Lemma (4.1). Thus (M ′v, v)H =

(
(B′)−1A′v, v

)
H

= 〈A′v,B−1v〉D(B)′,D(B)

= 〈A′v, w〉D(A)′,D(A) = (v,Aw)H = (Bw,Aw)H ≥ 0, since A is B-positive.

Moreover M ′ is closed, since it is the inverse of the continuous map

(M ′)−1 = (A′)−1B′ = (A′)−1 ◦ i′ ◦B′

where each of the maps

H
B′

−→ D(B)′ i′−→ D(A)′
(A′)−1

−−−−→ H
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is continuous. Since M ′ is accretive, closed and surjective (as A′, B′ are bijec-
tions), it is m-accretive, and the theorem is proved. �

The notion of solution in this case is

(
du

dt
,Bϕ)H + (u(t), Aϕ)H = 〈f(t), ϕ〉D(B)′,D(B)

for t ≥ 0 and ϕ ∈ D(A) ⊂ D(B). For the operators A and B of the RLME , for
which we have the special structure, A = bB +C, we can simplify the condition
u0 ∈ D = (A′)−1(D(B)′) to u0 ∈ D(C), as shown by the following lemma.

Lemma 4.3. A′ maps D(C) into D(B)′.

Proof. For u ∈ D(C) and v ∈ D(A) we have

|〈A′u, v〉| = |(u,Av)H |

≤ |(u, bBv)H |+ |(Cu, v)H |

≤ b‖u‖H‖v‖D(B) + k‖Cu‖H‖v||D(B)

≤ k‖u‖D(C)‖v‖D(B).

Since D(A) is dense in D(B), A′u has a unique extension to an element of
D(B)′. �

5. Regularity of Solutions of the RLME .

We now examine the evolution of singularities in the form of jump discontinuities
in the initial data. From the results of Section 4, these will be preserved in the
solution of the RLME , and we shall exhibit explicitly how they decay as t→∞.
This will be achieved by recasting the problem as an integral equation, a form
which is more revealing of the structure of the solutions. We work with the
RLME in the strong form

(B + hA)
du

dt

h

+Auh(t) = Fh(t) in H

uh(0) = u0,

(5.1)

and, for the moment, we shall suppress the superscript, h. Since B + hA is an
isomorphism, this is equivalent to

du

dt
+ (B + hA)−1Au(t) = (B + hA)−1F (t) (5.2)
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and rewriting (B+hA)−1A as
1
h

(
I − (B + hA)−1B

)
and rearranging terms, we

can express (5.2) as:

du

dt
+

1
h
u(t) = (B + hA)−1

{
1
h
Bu(t) + F (t)

}
, (5.3)

an ordinary differential equation which is equivalent to the integral equation in
Hilbert space

u(t) = e−
t
hu0 +

∫ t

0

e−
1
h (t−τ)(B + hA)−1

{
1
h
Bu(τ) + F (τ)

}
dτ (5.4)

in which F ∈ C(0, T ;H). This is of the form u(t) = Su(t), where S is an
operator on either C(0, T ;D(B)) or C(0, T ;D(A)) according as u0 ∈ D(B) or
D(A) respectively. An inductive argument shows that for n sufficiently large,
Sn is a contraction, and so S has a unique fixed point. Thus with u0 ∈ D(B)
and F ∈ C(0, T ;H), the Cauchy problem for (5.3) has a unique solution u ∈
C1(0, T ;D(B)) of the form

u(t) = e−
t
hu0 + u2(t)

where

u2(t) =
∫ t

0

e−
1
h (t−τ)(B + hA)−1

{
1
h
Bu(τ) + F (τ)

}
dτ.

Thus u2 ∈ C1(0, T ;D(A)), since B : D(B) → H while (B + hA)−1 : H → D(A).
Since D(A) ⊂ H2(Ω), u2(t) is continuous in (~x, z). On the other hand, D(B) ⊂
L2(D,H2(I)), and so the initial data, u0, and hence also the solution, u(t), while
continuous in z, are only L2 with respect to ~x = (x1, x2). Denoting the jump in,
for example, the x1-direction by σx1 , we conclude that

σx1 (u(t)) = e−
t
hσx1(u0),

giving an explicit decay rate for singularities in u0 with respect to x1 (or x2) as
t→∞.

We would similarly like to analyze the decay of singularities with respect
to z. This requires that we examine solutions of the RLME with initial data
u0 ∈ D(C) ⊂ L2(I,H2(D)). Taking account of the structure of A, namely
A = bB + C, b > 0, we can make the substitution

A =
b

1 + hb
(B + hA) +

1
1 + hb

C
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in (5.2), rewriting it as

du

dt
+

1
1 + hb

(
bI + (B + hA)−1C

)
u(t) = (B + hA)−1F (t) (5.5)

which can be recast as the equivalent integral equation

u(t) = e−
bt

1+hbuo +
∫ t

0

e−
b

1+hb (t−τ)(B+hA)−1

{
F (τ)− 1

1 + hb
Cu(τ)

}
dτ. (5.6)

As before, with u0 ∈ D(C) and F ∈ C(0, T ;H), a fixed point argument yields
a unique solution u ∈ C1(0, T ;D(C)) of (5.6) and hence of the Cauchy problem
for (5.5). This solution has the form

u(t) = u1(t) + u2(t)

where

u1(t) = e−
bt

1+hbu0 (5.7)

and

u2(t) =
∫ t

0

e−
b

1+hb (t−τ)(B + hA)−1

{
F (τ)− 1

1 + hb
Cu(τ)

}
dτ

(5.8)

so that u1 ∈ C∞(0, T ;D(C)), preserving singularities in the z-direction, while
u2 ∈ C1(0, T ;D(A)) and is uniformly continuous in (~x, z). We now have in

σz (u(t)) = e−( bt
1+hb )σz(u0)

an explicit decay rate for z-singularities in the initial data.

6. Regularity of Solutions of the LME .

We previously observed that the LME is regularizing in ~x but preserves regularity
in z. In order to establish for the LME a measure of the decay rate of z-
discontinuities in the initial data similar to that derived in Section 5 for the
RLME , we shall work with u0 ∈ D(C) ⊂ L2(I,H2(D)). It is not possible to
proceed directly, as in Section 5, for the corresponding integral formulation of
the LME is

u(t) = e−btu0 +
∫ t

0

e−b(t−τ)B−1 {F (τ)− Cu(τ)} dτ,
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and this does not define an operator on C(0, T ;D(C)), as required for the fixed-
point argument that we gave above. The obstacle is the term B−1C, which maps
D(C) → D(B) 6⊂ D(C). Replacing B−1C by the regularized term (B+hA)−1C :
D(C) → D(A) ⊂ D(C) in the RLME avoids this difficulty. For the LME we
shall calculate a decay rate for singularities by obtaining a solution of the LME
as a limit of solutions of the RLME as h→ 0.

We start with the solution

uh(t) = uh
1 (t) + uh

2 (t)

of the RLME with data u0 ∈ D(C) and Fh ∈ C(0, T ;H), where uh
1 and uh

2 are
given by (5.7) and (5.8). We note that uh

1 (t) = e−
bt

1+hb u0 solves:

duh
1

dt
+

b

1 + hb
uh

1 (t) = 0

uh
1 (0) = u0

(6.1)

and clearly uh
1 → u1 in L2(0, T ;H), where u1(t) = e−btu0. On the other hand,

by reversing the manipulations which led to the integral equation form of the
RLME , we see that uh

2 (t) solves:

(B + hA)
duh

2

dt
+Auh

2 (t) = Gh(t) in H

uh
2 (0) = 0

(6.2)

where

Gh(t) = Fh(t)− 1
1 + hb

Cuh
1 (t)

and

Fh(t) = F (t) + h
dF

dt
.

We shall assume that F ∈ C1(0, T ;H). It follows that Gh → G in C(0, T ;H)
and L2(0, T ;H) where G(t) = F (t)− e−btCu0.

We need several estimates on
{
uh

2

}
. To simplify the notation, we shall

suppress subscripts and superscripts, except on Gh. Let 0 ≤ s ≤ T . Since A is
self-adjoint and coercive,∫ s

0

(
Au(t),

du

dt

)
H

dt =
1
2

(Au(s), u(s))H ≥ 1
2
ka‖u(s)‖2A.
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Thus, if we take the inner product of (6.2) with du
dt and integrate

∫ s

0
, then using

the coercivity of A and B and an application of Young’s Inequality we get

kb

∥∥∥∥dudt
∥∥∥∥2

L2(0,s;VB)

+
1
2
ka‖u(s)‖2A ≤ 1

2
k−1

b

∥∥Gh
∥∥2

L2(0,T ;H)
+

1
2
kb

∥∥∥∥dudt
∥∥∥∥2

L2(0,s;VB)

where we have also exploited the embedding of VB in H. This establishes the
following:

(B1)
{
duh

2

dt

}
is bounded in L2(0, T ;VB);

(B2) {uh
2} is bounded in L∞(0, T ;VA) and hence in L2(0, T ;VA).

Since A is B-symmetric, we note that
d

dt
(Bu(t), Au(t))H = 2

(
B
du

dt
,Au(t)

)
H

and so:∫ s

0

(
(B + hA)

du

dt
,Au(t)

)
H

dt =
1
2

(Bu(s), Au(s))H +
1
2
h‖Au(s)‖2H ≥ 0,

as A is also B-positive. Thus, taking the inner product of (6.2) with Au(t) and
integrating

∫ T

0
yields the following:

(B3) {Auh
2} is bounded in L2(0, T ;H),

and hence from (B2):

(B4) {u2
h} is bounded in L2(0, T ;D(A)).

Finally, if we take the inner product of (6.2) with B du
dt and again use the B-

positivity and B-symmetry of A, then we find that

(B5)
{
B
duh

2

dt

}
is bounded in L2(0, T ;H),

which combines with (B1) to give

(B6)
{
duh

2

dt

}
is bounded in L2(0, T ;D(B)).

We conclude from (B4) and (B6) that we may choose a subsequence, which we
still denote by {uh

2}, such that

uh
2 ⇀ u2 in L2(0, T ;D(A)), (6.3)

duh
2

dt
⇀

du2

dt
in L2(0, T ;D(B)), (6.4)

and

Auh
2 ⇀ Au2 and B

duh
2

dt
⇀ B

du2

dt
(6.5)

in L2(0, T ;H) (and hence in L2(0, s;H) for s ∈ [0, T ]). To complete the conver-
gence argument we also need to verify that the initial condition, uh

2 (0) = 0, is
preserved in the limit.
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Lemma. Suppose that H is a Hilbert space, {vλ} ⊂ C1(0, T ;H), and that vλ ⇀

v,
dvλ

dt
⇀

dv

dt
in L2(0, T ;H) as λ→ 0. If vλ(0) = 0, ∀λ > 0, then v(0) = 0.

Proof. It follows from the representation

(vλ(s), ξ)H =
∫ s

0

(
dvλ

dt
(t), ξ

)
H

dt

for ξ ∈ H, s ∈ [0, T ], that

vλ(s) ⇀ v(s)− v(0) in H (6.6)

for s ∈ [0, T ]. With ξ ∈ H we also have, using an integration by parts, that∫ T

0

(
dvλ

dt
, tξ

)
H

dt =
(
Tvλ(T )−

∫ T

0

vλ(t) dt, ξ
)

H

→ (v(T )− v(0), T ξ)H −
∫ T

0

(v(t), ξ)H dt.

On the other hand, since tξ ∈ L2(0, T ;H), if we first take limits in
∫ T

0

(
dvλ

dt , tξ
)
H
dt

and then integrate by parts we see that∫ T

0

(
dvλ

dt
, tξ

)
H

dt→ (v(T ), T ξ)H −
∫ T

0

(v(t), ξ)H dt

whence v(0) = 0. �

Recalling that uh
2 ∈ C1(0, T ;D(A)) and u2 is AC, we conclude that u2(0) = 0.

We can now conclude the convergence argument to obtain the following.

Theorem. Suppose that {uh
2} ⊂ C1(0, T ;D(A)) are solutions of the RLME

d

dt
(B + hA)uh

2 (t) +Auh
2 (t) = Gh(t) in H

uh
2 (0) = 0

(6.7)

where A, B are as above and Gh → G in L2(0, T ;H). Then a subsequence of {uh
2}

converges weakly in L2(0, T ;H) to an absolutely continuous u2 ∈ L2(0, T ;D(A))

with
du2

dt
∈ L2(0, T ;D(B)), which is a solution of the LME in H

d

dt
Bu2(t) +Au2(t) = G(t), a.e. t ∈ [0, T ]

u2(0) = 0
(6.8)
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with u2(t) ∈ D(B) for every t ∈ [0, T ].

Proof. Let ξ ∈ D(A). Taking the inner product with ξ in (6.7) and integrating,
we get, for any s ∈ [0, T ]:∫ s

0

(
(B + hA)

duh
2

dt
, ξ

)
H
dt+

∫ s

0

(
Auh

2 (t), ξ
)
H
dt =

∫ s

0

(
Gh(t), ξ

)
H
dt. (6.9)

Then ∫ s

0

(
(B + hA)

duh
2

dt
, ξ

)
H
dt =

(
Buh

2 (s), ξ
)
H

+ h
(
Auh

2 (s), ξ
)
H

→ (Bu2(s), ξ)H

by (6.6), using that A is self-adjoint and that {uh
2} is bounded in L2(0, T ;H),

from (B2). Thus, taking limits in (6.9) gives

(Bu2(s), ξ)H +
∫ s

0

(Au2(t), ξ)H dt =
∫ s

0

(G(t), ξ)H dt

for any s ∈ [0, T ] and ξ ∈ D(A), which is dense in H, so (6.8) follows. That
u2(t) ∈ D(B) follows from the representation, u2(t) =

∫ t

0
du2
ds ds. �

To complete the asymptotic analysis we must reassemble u1(t) = e−btu0 ∈
C∞(0, T ;D(C)) and u2(t) as given by the theorem. Let

u(t) = u1(t) + u2(t) ∈ L2(0, T ;D(C)).

Note that, since u2(t) ∈ D(A) and
du2

dt
(t) ∈ D(B), for a.e. t,

B′
du

dt
+A′u(t) = B

du2

dt
+Au2(t)− be−btB′u0 + e−btA′u0

= F (t),

recalling that G(t) = F (t) − e−btCu0. Since u(t) ∈ D(C) for a.e. t, and A′ :
D(C) → D(B)′ (Lemma 4.3), the equation holds in D(B)′ for a.e. t. Moreover,
u is AC, u0 ∈ D(C) ⊂ (A′)−1(D(B)′), and F ∈ C1(0, T ;H) ⊂ C1(0, T ;D(B)′).
Thus u is the unique solution of the abstract Cauchy problem for the dual version
of the LME (see Theorem 4.2). It follows that u, and hence also u2, is in
C1(0, T ;H).

Thus the structure of the solution of the (dual of the) LME is

u(t) = e−btu0 + u2(t)



LAYERED MEDIUM 19

where u2(t) ∈ D(B) ⊂ {v ∈ L2(D × I) : v(~x, ·) ∈ H2(I) for a.e. ~x ∈ D},
and so u2(t, ~x, ·) is continuous for a.e. ~x ∈ D. On the other hand, the data
u0 ∈ D(C) ⊂ {v ∈ L2(D × I) : v(·, z) ∈ H2(D) for a.e. z ∈ I}. Hence u0(·, z)
is continuous for a.e. z ∈ I, but may have jump discontinuities in z, which are
preserved in u(t). The above representation now tells us that such singularities
decay at the rate e−bt, where b = GV /C > 0 is the ratio of the (average)
conductance to capacitance of the dielectric layers.
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