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Abstract

A coupled system consisting of a semilinear parabolic partial differential equation and a
family of ordinary differential equations which is capable of modeling a very general class of
hysteresis effects will be realized as an abstract Cauchy problem. Accretiveness estimates and
maximality conditions are established in a product of L1 spaces for the closure of the operator
associated with this problem. Thus, the Cauchy problem corresponding to the closed operator
admits a unique integral solution by way of the Crandall-Liggett theory. Special cases of the
system include a one-dimensional derivation from Maxwell’s equations for a ferromagnetic body
under slowly varying field conditions, the Super-Stefan problem, and other partial differential
equations with hysteresis terms appearing in the literature.
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1 Introduction

We shall consider here the well-posedness of the initial-boundary-value problem for a semilinear

(possibly) degenerate parabolic partial differential equation with a hysteresis nonlinearity in the

energy. This will include evolution equations of the form of a generalized porous medium equation

∂
∂t (a(u) +H(u))−∆u = f(1)

in which a(·) is a continuous monotone function and H is a hysteresis functional, that is, the output

H(u) depends not only on the current value of the input u, but also on the history of the input.

As an elementary but generic example of hysteresis, we mention a functional that arises in the

description of the Super-Stefan problem [14]. This functional provides an example of a simple but

basic form of hysteresis. The example depends on three parameters, α, β, and ε, with 0 < ε, α < β.
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Denote by [x]+ and [x]−, respectively, the positive and negative parts of the real number x. The

output w(t) = H(u(t)) varies for t > 0 according to the following:

if u > β + ε, then w = 1;
if u < α− ε, then w = −1;
if α− ε < u < β + ε, then |w| ≤ 1 and

w′(t) =


[

u′(t)
ε

]
+

if w = u−β
ε ,

0 if u−β
ε < w < u−α

ε ,[
u′(t)

ε

]
−

if w = u−α
ε .

Thus, for example, suppose that u(0) = 0 and w(0) = 0. As long as u(t) remains between α and β,

w(t) = 0. If u(t) increases to β and then beyond β + ε, then w(t) increases to +1 where it remains

until u(t) gets down to α+ ε. If u(t) decreases below α− ε, then w(t) will drop to −1 and remain

there until u(t) again reaches β − ε, and so on. Such a function arises naturally in the description

of the Super-Stefan problem [14] in which w(t)+1
2 represents the fraction of melt (water) in the

ice/water in terms of the temperature u(t); α is the freezing temperature and β is the melting

temperature. The limiting case obtained from ε → 0 is the ‘relay’ hysteresis functional that is

basic to the Preisach representation of a very general class of hysteresis functionals. This class will

be included in our theory below. When α = β this reduces to the classical Stefan free boundary

problem whose weak formulation is of the form (1) but with H replaced by the Heaviside function

(or graph) H(x) = 1
2(1 + sgn(x)), sgn(x) ≡ 1 if x > 0, sgn(x) ≡ −1 if x < 0, and sgn(0) = [−1, 1].

Also, our system can be used to produce a Krasnosel’skii-Pokrovskii hysteron.

Hysteresis is a very important and general concept, and one should consult the recent survey

[15] for a concise description of recent results on the development and application of mathematical

models of hysteresis. For an excellent well-motivated introduction to this topic, see the monograph

[16]. Due to the complex description of the operators traditionally used to represent hysteresis [12],

their addition to systems of differential equations leads to substantial technical problems for the

development of a good theory.

We shall show here that it is possible to include an extensive class of hysteresis functionals

in a fashion that is strikingly compatible with standard methods for differential equations. The

idea is to obtain the hysteresis output as the weighted average of the solutions of a system of

ordinary differential equations subject to constraints. The use of ordinary differential equations

with constraints to represent hysteresis is certainly not a new idea; specifically, the special form

appearing below in (3) is based on the construction in the earlier work [11] in which hysteresis
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occurs on the boundary. By choosing each of the component equations of the system to simulate a

simple relay (such as the example above) from a family parameterized by their switching values, α

and β, we are able to include the very general Preisach hysteresis models. The system consisting of

the semilinear parabolic equation coupled to this hysteresis model is then resolved as an application

of the theory of evolution equations in general Banach space. A related construction was recently

announced in [24] with corresponding results to appear; the distinction there is that the coupling

function is specified as a function of the two variables u, v instead of the function of the difference

of the variables.

The model problem (1) of a parabolic diffusion equation coupled to hysteresis has been studied

extensively by A. Visintin. In the case of a linear equation he has proved existence by backward-

difference discretization and compactness methods applied to monotone steps that describe the

discretization. In [21] is covered the (regularized) case without jumps in the defining functions of

the hysteresis model (such as the example above with ε > 0), and this is extended in [22] to the

case with jumps (ε = 0 above). The uniformly parabolic (nondegenerate) semilinear case with a

general Preisach hysteresis is covered in [23]. The uniqueness of a solution was established in [9].

We shall use freely the methods of convex analysis; see [1], [2], [6], or [19], for example. Specifi-

cally sgn−1 is the maximal monotone graph obtained as the subgradient (see Definition 1 in Section

2) of the convex indicator function (see below) of the interval [−1, 1] in R.

Let us describe the system to be considered here. Let Ω be a bounded domain in Rn with

smooth boundary ∂Ω, and let ν denote the unit outward normal. Let j, k, q : R → (−∞,+∞]

be convex lower-semi-continuous functions for which j and q are quadratically upper-bounded, k

is quadratically lower-bounded, and whose subgradients satisfy 0 ∈ ∂k(0), 0 ∈ ∂j(0), and ∂k,

∂q are single-valued. We shall denote these continuous monotone functions by a(·) = ∂k(·) and

b(·) = ∂q(·). Let m > 0, Sm = {s = (α, β) ∈ R2 : −m ≤ α < β ≤ m}, and (Sm,B, µ) a finite

measure space that contains the Borel measurable subsets of Sm. Let sgn−1
s ≡ ∂ζs, s = (α, β) ∈ Sm,

where ζs : R → {0,+∞} is the indicator function given by +∞ on R \ [α, β] and 0 on [α, β].

We consider the degenerate parabolic system of coupled equations with Neumann type boundary

conditions

∂
∂ta(u(x, t)) + ∂

∂t

∫
Sm

b(v(x, s, t)) dµ(s)−∆u(x, t) = f(x, t) x ∈ Ω, t ∈ (0, T ],(2)

∂
∂tb(v(x, s, t)) + sgn−1

s (v(x, s, t)− u(x, t)) 3 0 s ∈ Sm,(3)

− ∂
∂νu(τ, t) ∈ ∂j(u(τ, t)) τ ∈ ∂Ω,(4)
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for which the initial conditions a(u(x, 0)) and b(v(x, s, 0)) are specified.

In order to see how the constrained ordinary differential equation (3) produces the desired

hysteresis, we construct a hysteresis model as follows. Let a maximal monotone graph b(·) be

given; our hysteresis model will be of the type generalized play described by horizontal translates

of w ∈ b(u). The simple functional described above is given by the choice b = σε, where

σε(r) =


1 if r ≥ ε
r
ε if − ε < r < ε
−1 if r ≤ −ε.

Thus, we introduce a new variable, v, in order to represent the phase constraints:

w ∈ b(v), u− 1 ≤ v ≤ u+ 1.

Finally, we use the sgn−1 graph to realize these constraints. Let u(t) be a time-dependent input

to this generalized play model, and let w(t) be the corresponding output or response. There is at

each time a corresponding phase variable v(t) which is related to w(t) and u(t) as above, and so it

is required that w(t) be non-decreasing when v(t) = u(t)− 1, non-increasing when v(t) = u(t) + 1,

and stationary (w′(t) = 0) in the interior region, u− 1 < v < u+ 1. This is equivalent to requiring

that w(t), v(t) satisfy

w(t) ∈ b(v(t)), w′ + sgn−1(v(t)− u(t)) 3 0.

Thus, we are led to ordinary differential equations of the form

w(t) ∈ b(v(t)), w′(t) + c(v(t)− u(t)) 3 0

with maximal monotone graphs b(·) and c(·) as models of hysteresis in which the output is the

solution w(t) with input u(t).

Although we are restricted here to (single-valued) functions b(·), the Heaviside graph b = H as

well as the other general examples are obtained through the Preisach representation implicit in the

integral in (2). The use of the hysteresis loops produced by σε as a substitute in the construction

of the Preisach model is discussed in [16, p.31]. In the case a(r) = r and b = σε, the partial

differential equation (2) corresponds to a one-dimensional derivation from Maxwell’s equations for

a ferromagnetic body under slowly varying field conditions [13,23]. Also in this case, if we allow µ

to be a Dirac mass, then (2) corresponds to the Super-Stefan problem [14,22]. If we choose b(r) = r,

then (3) produces a Krasnosel’skii-Pokrovskii hysteron for each s ∈ Sm [12,15].
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Systems of the general form of (2)-(4) appear in many other contexts in which (3) is frequently

a local storage or capacity in immobile (nondiffusive) sites. A similar quasilinear system in which

all three of a(·), b(·), and c(·) are monotone functions with power growth rates was developed in

[20]. The device used there to prove regularity of solutions, i.e., to show the difference scheme

also converges in a dual Sobolev space, could be used to get properties of solutions here. Also

the technique of approximating the generalized solutions by smooth solutions of a corresponding

problem with regularized functions is applicable here. We also remark that a maximum principle is

immediate from the estimates in Section 4 for the system (2)-(4). The maximum principle together

with an obvious choice of k gives ∂
∂ta(u(x, t)) ≡ 0, and in this case (2) takes the form of (P1) in [21].

See [18] for additional related systems. For control of Stefan problems by hysteresis functionals,

see [8,10].

Our objective is to show that the dynamics of problem (2)-(4) is determined by a nonlinear

semigroup of contractions on the Banach space L1(Ω) × L1(Ω × Sm). The negative of the gen-

erator of this contraction semigroup is the closure C in
[
L1(Ω)× L1(Ω× Sm)

]2 of an operator

C ⊂
[
L2(Ω)× L2(Ω× Sm)

]2 for which the resolvent equation (I + ηC)(a(u), b(v)) 3 (f, 0), with

η > 0, u ∈ H2(Ω), f, a(u) ∈ L2(Ω), and v, b(v) ∈ L2(Ω× Sm), takes the form

a(u) +
∫

Sm

b(v) − η∆u 3 f in Ω,

b(v) + η sgn−1
s (v − u) 3 0 in Ω× Sm,

−∂u
∂ν ∈ ∂j(u) on ∂Ω.

This will follow from our construction in Section 4 of the operator C and the verification that it is

an m-accretive operator on this Banach space. A (possibly multi-valued) operator or relation C in

a Banach space X is a collection of related pairs [x, y] ∈ X ×X denoted by y ∈ C(x); the domain

D(C) is the set of all such x and the range Rg(C) consists of all such y. The operator C is called

accretive if for all y1 ∈ C(x1), y2 ∈ C(x2) and ε > 0

‖x1 − x2‖ ≤ ‖x1 − x2 + ε(y1 − y2)‖ .

This is equivalent to requiring that (I + εC)−1 is a contraction on Rg(I + εC) for every ε > 0. If,

in addition, Rg(I + εC) = X for some (equivalently, for all) ε > 0, then C is called m-accretive. In

Section 5 we shall recall the nonlinear semigroup theory and describe its application to (2)-(4).
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2 The Resolvent Equation

Let λ denote Lebesgue measure on Rn. Let γ : H1(Ω) → L2(∂Ω) be the trace map [17]. Any

pointwise statement made in regard to an element of a function space is assumed to be made in

terms of a finite-valued representative of the equivalence class associated with that element.

Let j : R → (−∞,+∞] be proper (j 6≡ +∞), convex, and lower-semi-continuous. Define

Φ1 : L2(Ω)× L2(Ω× Sm) → (−∞,+∞] by

Φ1(u, v) =

 1
2

∫
Ω
|∇u|2 +

∫
∂Ω
j(γu) if u ∈ H1(Ω) and j(γu) ∈ L1(∂Ω)

+∞ otherwise.

Note that Φ1 does not depend on the second component v, however, defining Φ1 as above will allow

for simpler notation in some of the results to follow.

Remark 1 The function Φ1 is proper, convex, and lower-semi-continuous [1].

The essential elements of the proof of the following lemma are contained in [5].

Lemma 1 Let r : R→ R be Lebesgue measurable and bounded, σ(x) =
∫ x

0
r(t) dt, and u ∈ H1(Ω).

Then

d
dxi
σ(u) = r(u) du

dxi
a.e. for i = 1, 2, ..., n , and

σ(u) ∈ H1(Ω).

We prove an additional elementary lemma.

Lemma 2 Let σ : R→ R be a Lipschitz function. For every u ∈ H1(Ω), we have γσ(u) = σ(γu).

Proof: Fix u ∈ H1(Ω). Choose a sequence {un} in C∞(Ω) such that un → u in H1(Ω). We

clearly have sup
n
‖σ(un)‖L2(Ω) < +∞. Note that Lemma (1) implies sup

n
‖|∇σ(un)|‖L2(Ω) < +∞.

Hence, there exists a w ∈ H1(Ω) and a subsequence {σ(un)} (after a change of notation) such

that un ⇀ w in H1(Ω). Hence, σ(un) ⇀ w in L2(Ω). We also have σ(un) ⇀ σ(u) in L2(Ω) and so

w = σ(u). The compactness of the trace operator implies γσ(un) → γσ(u) in L2(∂Ω). After a change

of notation we have γσ(un)(τ) → γσ(u)(τ) at almost every τ ∈ ∂Ω. We also have (after a change

of notation) that γun(τ) → γu(τ) at almost every τ ∈ ∂Ω, and therefore σ(γun(τ)) → σ(γu(τ)) at

almost every τ ∈ ∂Ω. After noting that γσ(un)(τ) = σ(γun(τ)) for all n and all τ ∈ ∂Ω [17], we

have γσ(u)(τ) = σ(γu(τ)) at almost every τ ∈ ∂Ω. 2
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Definition 1 If H is a real Hilbert space and Ψ : H → (−∞,+∞] is proper, convex, and lower-

semi-continuous, then the symbol ∂ applied to Ψ produces a relation in H ×H defined as follows:

For u ∈ Dom(Ψ) ≡ {u ∈ H : Ψ(u) < +∞}, define ∂Ψ(u) ≡ {w ∈ H : 〈w, v − u〉H ≤ Ψ(v) −
Ψ(u) for all v ∈ H}. If w ∈ ∂Ψ(u), we say w is a subgradient of Ψ at u.

Remark 2 If Ψ is as in Definition (1), then ∂Ψ is an m-accretive operator in H [1,2].

Let k : R → (−∞,+∞] be proper, convex, and lower-semi-continuous. Define Φ2 : L2(Ω) ×
L2(Ω× Sm) → (−∞,+∞] by

Φ2(u, v) =


∫
Ω
k(u) if k(u) ∈ L1(Ω)

+∞ otherwise.

Remark 3 The function Φ2 is proper, convex, and lower-semi-continuous [1].

Proposition 1 Assume 0 ∈ ∂j(0) and 0 ∈ ∂k(0). Then ∂Φ1 + ∂Φ2 is m-accretive.

Proof: A sufficient condition for ∂Φ1 + ∂Φ2 to be m-accretive is that for all (u, v) ∈ DomΦ1 and

all η > 0 we have

Φ1

(
(I + η∂Φ2)−1(u, v)

)
≤ Φ1(u, v) [2].

Fix (u, v) ∈ DomΦ1 and η > 0. Note that (f1, f2) = (I + η∂Φ2)−1(u, v) implies f1(x) = (I +

η∂k)−1(u(x)) at almost every x ∈ Ω [1,19]. Using f1 = (I + η∂k)−1(u), the fact that (I + η∂k)−1 :

R→ R is a (monotone) contraction [2], Lemma (1), and Lemma (2), we obtain

Φ1
(
(I + η∂Φ2)−1(u, v)

)
= 1

2

∫
Ω
|∇(I + η∂k)−1(u)|2 +

∫
∂Ω
j
(
(I + η∂k)−1(γu)

)
.(5)

Note that j
(
(I + η∂k)−1(t)

)
≤ j(t), t ∈ R, and hence for every w ∈ H1(Ω) we have

j
(
(I + η∂k)−1(γw(τ))

)
≤ j(γw(τ)), τ ∈ ∂Ω.(6)

Since (I + η∂k)−1 : R→ R is a contraction, Lemma (1) implies∫
Ω
|∇(I + η∂k)−1(w)|2 ≤

∫
Ω
|∇w|2, w ∈ H1(Ω).(7)

Using (5), (6), and (7) we obtain

Φ1

(
(I + η∂Φ2)−1(u, v)

)
≤ Φ1(u, v).

2
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Remark 4 The function Φ1 + Φ2 is convex and lower-semi-continuous. The function Φ1 + Φ2 is

proper provided Dom(j) ∩ Dom(k) 6= ∅. Hence, under the hypothesis of Proposition (1) we have

∂(Φ1 + Φ2) = ∂Φ1 + ∂Φ2 [2].

For each s = (α, β) ∈ Sm, define ζs : R→ {0,+∞} by

ζs(t) =

{
0 if α ≤ t ≤ β
+∞ otherwise .

Let sgn−1
s ≡ ∂ζs.

After noting that (x, s) 7→ ζs(v(x, s)− u(x)) is λ× µ-measurable, (u, v) ∈ L2(Ω)×L2(Ω× Sm),

we define Φ3 : L2(Ω)× L2(Ω× Sm) → {0,+∞} by

Φ3(u, v) =
∫
Ω×Sm

ζs(v(x, s)− u(x)) d(λ× µ)(x, s).

Remark 5 Note that Dom(Φ3) = {(u, v) ∈ L2(Ω)× L2(Ω× Sm) : Φ3(u, v) = 0}.

Lemma 3 The function Φ3 is proper, convex, and lower-semi-continuous.

Proof: The convexity of Φ3 is clear. To see that Φ3 is proper, let v(x, s) = α and u = 0 to get

Φ3(u, v) = 0. We need to show A = {(u, v) ∈ L2(Ω)×L2(Ω×Sm) : Φ3(u, v) = 0} is closed. Assume

{(un, vn)} ⊂ A and (un, vn) → (u, v) in L2(Ω) × L2(Ω × Sm). After a change of notation we may

assume vn(x, s)− un(x) → v(x, s)− u(x) at almost every (x, s) ∈ Ω× Sm. Therefore,

0 = lim inf
∫
Ω×Sm

ζs(vn(x, s)− un(x)) d(λ× µ)(x, s)

≥
∫
Ω×Sm

lim inf ζs(vn(x, s)− un(x)) d(λ× µ)(x, s)

≥
∫
Ω×Sm

ζs(v(x, s)− u(x)) d(λ× µ)(x, s)

≥ 0.

Hence, Φ3(u, v) = 0. 2

Lemma 4 We have (f1, f2) ∈ ∂Φ3(u, v) iff u ∈ L2(Ω), v ∈ L2(Ω × Sm), f2 ∈ L2(Ω × Sm), f1 =

−
∫

Sm

f2 dµ , and f2(x, s) ∈ ∂ζs(v(x, s)− u(x)) at almost every (x, s) ∈ Ω× Sm.

8



Proof: Fix (f1, f2) ∈ ∂Φ3(u, v). For every (g1, g2) ∈ L2(Ω)× L2(Ω× Sm) we have∫
Ω
f1(g1 − u) dλ+

∫
Ω×Sm

f2(g2 − v) d(λ× µ) ≤ Φ3(g1, g2).(8)

Let g1 = u + h and g2 = v + h, with h ∈ L2(Ω), in (8) to get
∫
Ω
hf1 dλ +

∫
Ω×Sm

hf2 d(λ × µ) ≤ 0,

i.e.
∫
Ω
h

(
f1 +

∫
Sm

f2 dµ

)
dλ ≤ 0. Hence, f1 = −

∫
Sm

f2 dµ. Let f1 = −
∫

Sm

f2 dµ in (8) so that for

every (g1, g2) ∈ L2(Ω)× L2(Ω× Sm) we have∫
Ω×Sm

f2(u− g1 + g2 − v) d(λ× µ) ≤ Φ3(g1, g2).(9)

Let g1 = 0 in (9) so that for every g2 ∈ L2(Ω× Sm) we have∫
Ω×Sm

f2(x, s) (g2(x, s)− (v(x, s)− u(x))) d(λ× µ)(x, s)

≤
∫
Ω×Sm

ζs(g2(x, s)) d(λ× µ)(x, s).(10)

Let {tj} be an enumeration of the rational numbers. Define

Ntj = {(x, s) ∈ Ω× Sm : α ≤ tj ≤ β and f2(x, s) (tj − (v(x, s)− u(x))) > 0}.

If (λ× µ)(Ntj ) > 0, then letting

g2(x, s) =

{
tj if (x, s) ∈ Ntj

v(x, s)− u(x) otherwise

in (10) gives

0 <
∫

Ntj

f2(x, s) (tj − (v(x, s)− u(x))) d(λ× µ)(x, s) ≤ 0.

Hence, (λ× µ)(Ntj ) = 0 for each j. Let N1 =
∞⋃

j=1

Ntj , N2 = {(x, s) ∈ Ω× Sm : ζs(v(x, s)− u(x)) =

+∞}, and N = N1 ∪N2. Note that (λ× µ)(N) = 0. Fix (x, s) ∈ Ω× Sm \N. If t ∈ R \ [α, β], then

f2(x, s)(t− (v(x, s)− u(x))) < +∞ = ζs(t) = ζs(t)− ζs(v(x, s)− u(x)).

If t ∈ [α, β], then choose {tjk
} ⊂ [α, β] so that tjk

→ t. For each k we have f2(x, s)(tjk
− (v(x, s)−

u(x))) ≤ 0. Hence, f2(x, s)(t− (v(x, s)− u(x))) ≤ 0. Hence,

f2(x, s)(t− (v(x, s)− u(x))) ≤ 0 = ζs(t)− ζs(v(x, s)− u(x)).
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We have shown

f2(x, s) ∈ ∂ζs(v(x, s)− u(x)) at almost every (x, s) ∈ Ω× Sm.(11)

For the converse we have (11) ⇒ (10) ⇒ (9) ⇒ (8), and therefore (f1, f2) ∈ ∂Φ3(u, v). 2

Proposition 2 Assume 0 ∈ ∂j(0) and 0 ∈ ∂k(0). Then ∂Φ1 + ∂Φ2 + ∂Φ3 is m-accretive.

Proof: Note that if the measure µ(·) is replaced by the measure 1
µ(Sm)µ(·) in the definition of

Φ3, then Φ3 remains unchanged, and therefore ∂Φ3 remains unchanged. For the remainder of this

proof we assume, without loss of generality, that µ(Sm) = 1. Fix (f1, f2) ∈ L2(Ω) × L2(Ω × Sm).

Let u ∈ L2(Ω). We can use Jensen’s inequality, the fact that (I + ∂ζs)−1(α) = α, and the fact that

(I + ∂ζs)−1 : R→ R is a contraction, to obtain∫
Ω

(∫
Sm

(
f2(x, s)− (I + ∂ζs)−1(f2(x, s)− u(x))

)
dµ(s)

)2

dλ(x)

≤
∫
Ω

∫
Sm

(
f2(x, s)− (I + ∂ζs)−1(f2(x, s)− u(x))

)2
dµ(s) dλ(x)

=
∫
Ω

∫
Sm

(
f2(x, s) + (I + ∂ζs)−1(α)− (I + ∂ζs)−1(f2(x, s)− u(x))− α

)2
dµ(s) dλ(x)

≤
∫
Ω

∫
Sm

(2|f2(x, s)|+ |u(x)|+ 2|α|)2 dµ(s) dλ(x) < +∞.

Therefore,
∫

Sm

(
f2 − (I + ∂ζs)−1(f2 − u)

)
dµ ∈ L2(Ω). Define T : L2(Ω)×L2(Ω×Sm) → L2(Ω)×

L2(Ω× Sm) by

T (u, v) =
(
I + 1

2∂Φ1 + 1
2∂Φ2

)−1
(

1
2

(
f1 +

∫
Sm

(
f2 − (I + ∂ζs)−1(f2 − u)

)
dµ

)
, 1

2v

)
.

We can use the fact that
(
I + 1

2∂Φ1 + 1
2∂Φ2

)−1
: L2(Ω)×L2(Ω× Sm) → L2(Ω)×L2(Ω× Sm) is a

contraction, Jensen’s inequality, and the fact that (I + ∂ζs)−1 : R→ R is a contraction, to obtain

‖T (u1, v1)− T (u2, v2)‖L2(Ω)×L2(Ω×Sm)

≤ 1
2

∥∥∥∥∫
Sm

(I + ∂ζs)−1(f2 − u1) dµ−
∫

Sm

(I + ∂ζs)−1(f2 − u2) dµ
∥∥∥∥

L2(Ω)

+ 1
2‖v1 − v2‖L2(Ω×Sm)

= 1
2

(∫
Ω

(∫
Sm

(
(I + ∂ζs)−1(f2 − u1)− (I + ∂ζs)−1(f2 − u2)

)
dµ

)2

dλ

)1
2

+ 1
2‖v1 − v2‖L2(Ω×Sm)
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≤ 1
2

(∫
Ω

∫
Sm

|(I + ∂ζs)−1(f2 − u1)− (I + ∂ζs)−1(f2 − u2)|2 dµ dλ
)1

2
+ 1

2‖v1 − v2‖L2(Ω×Sm)

≤ 1
2

(∫
Ω

∫
Sm

|u1 − u2|2 dµ dλ
)1

2
+ 1

2‖v1 − v2‖L2(Ω×Sm)

= 1
2

(∫
Ω
|u1 − u2|2 dλ

)1
2

+ 1
2‖v1 − v2‖L2(Ω×Sm)

= 1
2‖(u1, v1)− (u2, v2)‖L2(Ω)×L2(Ω×Sm).

Hence, T is a strict contraction. Let (u0, v0) be the fixed point of T. Note that T (u0, v0) = (u0, v0)

implies (
f1 +

∫
Sm

(
f2 − (I + ∂ζs)−1(f2 − u0)

)
dµ− 2u0,−v0

)
∈ ∂Φ1(u0, v0) + ∂Φ2(u0, v0).(12)

Remark (4) and statement (12) imply that for every (g1, g2) ∈ L2(Ω)× L2(Ω× Sm) we have∫
Ω

(
(g1 − u0)

(
f1 +

∫
Sm

(
f2 − (I + ∂ζs)−1(f2 − u0)

)
dµ− 2u0

))
dλ

−
∫
Ω×Sm

(g2 − v0)v0 d(λ× µ)

≤ Φ1(g1, g2) + Φ2(g1, g2)− Φ1(u0, v0)− Φ2(u0, v0).(13)

Letting g1 = u0 and g2 = v0 − sgn0(v0) in (13) gives
∫
Ω×Sm

|v0| ≤ 0. Hence,

(
f1 +

∫
Sm

(
f2 − (I + ∂ζs)−1(f2 − u0)

)
dµ− 2u0, 0

)
∈ ∂Φ1(u0, 0) + ∂Φ2(u0, 0).(14)

If we let w0(x, s) = (I + ∂ζs)−1(f2(x, s)− u0(x)) + u0(x), then f2(x, s)− w0(x, s) ∈ ∂ζs(w0(x, s)−
u0(x)). Therefore, Lemma (4) implies(∫

Sm

(w0 − f2) dµ, f2 − w0

)
∈ ∂Φ3(u0, w0).(15)

At this point we need to modify statement (14). Since Φ1(u0, 0) = Φ1(u0, w0) and Φ2(u0, 0) =

Φ2(u0, w0), we have(
f1 +

∫
Sm

(
f2 − (I + ∂ζs)−1(f2 − u0)

)
dµ− 2u0, 0

)
∈ ∂Φ1(u0, w0) + ∂Φ2(u0, w0).(16)

Adding (15) and (16) gives(
f1 +

∫
Sm

(
w0 − (I + ∂ζs)−1(f2 − u0)

)
dµ− 2u0, f2 − w0

)
(17)

∈ ∂Φ1(u0, w0) + ∂Φ2(u0, w0) + ∂Φ3(u0, w0).(18)
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After simplifying (17) we have (f1, f2) ∈ (I + ∂Φ1 + ∂Φ2 + ∂Φ3)(u0, w0). In other words, I + ∂Φ1 +

∂Φ2 + ∂Φ3 is onto L2(Ω)× L2(Ω× Sm). Hence, ∂Φ1 + ∂Φ2 + ∂Φ3 is m-accretive. 2

Remark 6 The function Φ1 + Φ2 + Φ3 is convex and lower-semi-continuous. The function Φ1 +

Φ2 + Φ3 is proper provided Dom(j) ∩Dom(k) 6= ∅. Hence, under the hypothesis of Proposition (2)

we have ∂(Φ1 + Φ2 + Φ3) = ∂Φ1 + ∂Φ2 + ∂Φ3 [2].

Let q : R → (−∞,+∞] be proper, convex, and lower-semi-continuous. Define Φ4 : L2(Ω) ×
L2(Ω× Sm) → (−∞,+∞] by

Φ4(u, v) =


∫
Ω×Sm

q(v) if q(v) ∈ L1(Ω× Sm)

+∞ otherwise.

Remark 7 The function Φ4 is proper, convex, and lower-semi-continuous [1].

Proposition 3 Assume 0 ∈ ∂j(0), 0 ∈ ∂k(0), and |q(t)| ≤ c(t2 + 1) for all t ∈ R. Then ∂Φ1 +

∂Φ2 + ∂Φ3 + ∂Φ4 is m-accretive.

Proof: The operator ∂Φ1 + ∂Φ2 + ∂Φ3 is m-accretive by Proposition (2), and therefore ∂Φ1 +

∂Φ2 + ∂Φ3 + ∂Φ4 will be m-accretive if int(Dom(∂Φ4)) ∩ Dom(∂Φ1 + ∂Φ2 + ∂Φ3) 6= ∅ [2]. We

have Dom(∂Φ1 + ∂Φ2 + ∂Φ3) 6= ∅ since ∂(Φ1 + Φ2 + Φ3) = ∂Φ1 + ∂Φ2 + ∂Φ3 . We also have

int(Dom(∂Φ4)) = L2(Ω) × L2(Ω × Sm) since Φ4 is continuous [6,19]. Hence, int(Dom(∂Φ4)) ∩
Dom(∂Φ1 + ∂Φ2 + ∂Φ3) 6= ∅. 2

Remark 8 The function Φ1 + Φ2 + Φ3 + Φ4 is convex and lower-semi-continuous. The function

Φ1+Φ2+Φ3+Φ4 is proper provided Dom(j)∩Dom(k) 6= ∅ and |q(t)| ≤ c(t2+1) for all t ∈ R. Hence,

under the hypothesis of Proposition (3) we have ∂(Φ1 + Φ2 + Φ3 + Φ4) = ∂Φ1 + ∂Φ2 + ∂Φ3 + ∂Φ4

[2].

3 Coercivity

Proposition 4 Assume 0 ∈ ∂j(0), 0 ∈ ∂k(0), |q(t)| ≤ c1(t2 + 1) for all t ∈ R, and k(t) ≥ c2t
2 −

c3 for all t ∈ R, with c2, c3 > 0. Then Rg(∂Φ1 + ∂Φ2 + ∂Φ3 + ∂Φ4) = L2(Ω)× L2(Ω× Sm).
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Proof: We need to verify that Φ1 + Φ2 + Φ3 + Φ4 is coercive on L2(Ω)× L2(Ω× Sm), i.e.

Φ1(u,v)+Φ2(u,v)+Φ3(u,v)+Φ4(u,v)
‖u‖L2(Ω)+‖v‖L2(Ω×Sm)

−→ +∞,

as ‖u‖L2(Ω) + ‖v‖L2(Ω×Sm) → +∞ [2].

If the coercivity condition did not hold we could find a sequence {(un, vn)} in L2(Ω)×L2(Ω×Sm)

and a constant K1 such that

Φ1(un, vn) + Φ2(un, vn) + Φ3(un, vn) + Φ4(un, vn) ≤ K1(‖un‖L2(Ω) + ‖vn‖L2(Ω×Sm)),

with ‖un‖L2(Ω) + ‖vn‖L2(Ω×Sm) → +∞.

Note that ζs(t) ≥ t2 −m2 for all s ∈ Sm and all t ∈ R. Using this lower bound on ζs and the lower

bound on k from the hypothesis, we obtain

1
2‖|∇un|‖2

L2(Ω) +
∫

∂Ω
j(γun) + c2‖un‖2

L2(Ω) + ‖vn − un‖2
L2(Ω×Sm) +

∫
Ω×Sm

q(vn)

≤ K2(‖un‖L2(Ω) + ‖vn‖L2(Ω×Sm) + 1).(19)

There exists constants a1 and a2 such that j(t) ≥ a1t+ a2 for all t ∈ R [2,19]. Hence,∫
∂Ω
j(γun) ≥ a3 + a1

∫
∂Ω
γun , where a3 = a2|∂Ω|.

Similarly, there are constants b1 and b2 such that q(t) ≥ b1t+ b2 for all t ∈ R. Hence,∫
Ω×Sm

q(vn) ≥ b3 + b1

∫
Ω×Sm

vn , where b3 = b2|Ω× Sm|.

Inequality (19) can now be used to obtain

1
2‖|∇un|‖2

L2(Ω) + a3 + a1

∫
∂Ω
γun + c2‖un‖2

L2(Ω) + ‖vn − un‖2
L2(Ω×Sm) + b3 + b1

∫
Ω×Sm

vn

≤ K2

(
‖un‖L2(Ω) + ‖vn‖L2(Ω×Sm) + 1

)
.(20)

Upon dividing inequality (20) by 1
2‖|∇un|‖2

L2(Ω) + c2‖un‖2
L2(Ω) + ‖vn − un‖2

L2(Ω×Sm) and using

‖vn‖L2(Ω×Sm) ≤ ‖vn − un‖L2(Ω×Sm) + (µ(Sm))
1
2 ‖un‖L2(Ω), we obtain

a3+b3+a1

∫
∂Ω

γun +b1

∫
Ω×Sm

vn

1
2‖|∇un|‖2

L2(Ω)
+c2‖un‖2

L2(Ω)
+‖vn−un‖2

L2(Ω×Sm)

+ 1

≤
K3

(
‖un‖L2(Ω)+‖vn−un‖L2(Ω×Sm)+1

)
1
2‖|∇un|‖2

L2(Ω)
+c2‖un‖2

L2(Ω)
+‖vn−un‖2

L2(Ω×Sm)

.(21)
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To see that the right side of (21) tends to zero as n→ +∞, consider the following three cases:

1. ‖un‖L2(Ω) is unbounded and ‖vn − un‖L2(Ω×Sm) is bounded.
2. ‖un‖L2(Ω) and ‖vn − un‖L2(Ω×Sm) are both unbounded.
3. ‖un‖L2(Ω) is bounded (and hence ‖vn − un‖L2(Ω×Sm) is unbounded).

We will therefore obtain a contradiction if it can be shown that

‖γun‖L2(∂Ω)+‖vn‖L2(Ω×Sm)

1
2‖|∇un|‖2

L2(Ω)
+c2‖un‖2

L2(Ω)
+‖vn−un‖2

L2(Ω×Sm)

→ 0, as n→ +∞.

Let M =
(
min

(
1
2 , c2

))−1
. Using 1

M ‖un‖2
H1(Ω) ≤

1
2‖|∇un|‖2

L2(Ω) + c2‖un‖2
L2(Ω) and ‖vn‖L2(Ω×Sm) ≤

(µ(Sm))
1
2 ‖un‖L2(Ω) + ‖vn − un‖L2(Ω×Sm), we obtain

‖γun‖L2(∂Ω)+‖vn‖L2(Ω×Sm)

1
2‖|∇un|‖2

L2(Ω)
+c2‖un‖2

L2(Ω)
+‖vn−un‖2

L2(Ω×Sm)

≤
M

(
‖γun‖L2(∂Ω)+(µ(Sm))

1
2 ‖un‖L2(Ω)+‖vn−un‖L2(Ω×Sm)

)
‖un‖2

H1(Ω)
+M‖vn−un‖2

L2(Ω×Sm)

.(22)

If ‖un‖H1(Ω) is bounded, then ‖γun‖L2(∂Ω) is bounded and ‖vn−un‖L2(Ω×Sm) is unbounded. Hence,

if ‖un‖H1(Ω) is bounded, then the right side of (22) tends to zero as n → +∞. On the other

hand, if ‖un‖H1(Ω) is unbounded, then the right side of (22) also tends to zero as n → +∞.

Therefore, the coercivity condition holds. Thus, Rg (∂(Φ1 + Φ2 + Φ3 + Φ4)) = L2(Ω)×L2(Ω×Sm).

However, under the assumptions 0 ∈ ∂j(0), 0 ∈ ∂k(0), and |q(t)| ≤ c(t2 + 1) for all t ∈ R, we

have ∂(Φ1 + Φ2 + Φ3 + Φ4) = ∂Φ1 + ∂Φ2 + ∂Φ3 + ∂Φ4. Hence, Rg(∂Φ1 + ∂Φ2 + ∂Φ3 + ∂Φ4) =

L2(Ω)× L2(Ω× Sm). 2

4 The M-Accretive Operator

Let Z = Φ1 + Φ3 and note that Z is proper, convex, and lower-semi-continuous. Define

Λ : H1(Ω) → (H1(Ω))∗ by

(Λu)(ϕ) =
∫
Ω
∇u · ∇ϕ for u, ϕ ∈ H1(Ω).

Lemma 5 Assume |j(t)| ≤ c(t2+1) for all t ∈ R. Then (f, g) ∈ ∂Z(u, v) iff u ∈ H1(Ω), f ∈ L2(Ω),

g ∈ L2(Ω × Sm), v ∈ L2(Ω × Sm), g(x, s) ∈ ∂ζs(v(x, s) − u(x)) at almost every (x, s) ∈ Ω × Sm,

and there exists a w ∈ L2(∂Ω), with w(τ) ∈ ∂j(γu(τ)) at almost every τ ∈ ∂Ω, such that∫
Ω
fh+

∫
Ω×Sm

gh = (Λu)(h) +
∫

∂Ω
wγh for all h ∈ H1(Ω).
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Proof: If (f, g) ∈ ∂Z(u, v), then for all (ψ1, ψ2) ∈ H1(Ω)× L2(Ω× Sm) we have∫
Ω
f(ψ1 − u) +

∫
Ω×Sm

g(ψ2 − v)

≤ 1
2

∫
Ω
|∇ψ1|2 +

∫
∂Ω
j(γψ1) +

∫
Ω×Sm

ζs(ψ2 − ψ1)− 1
2

∫
Ω
|∇u|2 −

∫
∂Ω
j(γu).(23)

Let ψ1 = u+ h and ψ2 = v + h, with h ∈ H1(Ω), in inequality (23) to get∫
Ω
fh+

∫
Ω×Sm

gh ≤ 1
2

∫
Ω
|∇(u+ h)|2 − 1

2

∫
Ω
|∇u|2(24)

+
∫

∂Ω
j(γ(u+ h))−

∫
∂Ω
j(γu) for all h ∈ H1(Ω).

Now let h = ψ1 − u, with ψ1 ∈ H1(Ω), in inequality (24) to get∫
Ω
f(ψ1 − u) +

∫
Ω×Sm

g(ψ1 − u) ≤ 1
2

∫
Ω
|∇ψ1|2 − 1

2

∫
Ω
|∇u|2

+
∫

∂Ω
j(γψ1)−

∫
∂Ω
j(γu) for all ψ1 ∈ H1(Ω).(25)

Define Γ1 : H1(Ω) → R by Γ1(ψ) = 1
2(Λψ)(ψ) and Γ2 : H1(Ω) → R by Γ2(ψ) =

∫
∂Ω
j(γψ).

Note that Γ1 and Γ2 are convex. Note that Γ1 is continuous. Since Γ2 is locally upper-bounded,

Γ2 is continuous [6,19]. At this point we would like to consider ∂ acting on Γ1 to produce a

relation in H1(Ω) × (H1(Ω))∗, i.e. for u ∈ Dom(Γ1) ≡ {u ∈ H1(Ω) : Γ1(u) < +∞}, define

∂Γ1(u) ≡ {w∗ ∈ (H1(Ω))∗ : w∗(v − u) ≤ Γ1(v) − Γ1(u) for all v ∈ H1(Ω)}. If w∗ ∈ ∂Γ1(u), we

say w∗ is a subgradient of Γ1 at u [6,19]. We will also take this meaning for ∂ acting on Γ2 and

Γ1 +Γ2. We clearly have ∂Γ1 +∂Γ2 ⊂ ∂(Γ1 +Γ2). A sufficient condition for ∂Γ1 +∂Γ2 = ∂(Γ1 +Γ2)

is that Γ1 is continuous at some point in Dom(Γ1) ∩ Dom(Γ2) [6,19]. This condition is clearly

satisfied since Γ1 is continuous and Dom(Γ1) ∩ Dom(Γ2) = H1(Ω). Note that if Tf,g ∈ (H1(Ω))∗

is given by Tf,g(ψ) =
∫
Ω
fψ +

∫
Ω×Sm

gψ, then (25) implies Tf,g is a subgradient of Γ1 + Γ2 at u.

Hence, Tf,g = d1 + d2 for some subgradient d1 of Γ1 at u and some subgradient d2 of Γ2 at u.

The subgradients of Γ1 and Γ2 are readily characterized [6,19]. These characterizations imply there

exists a w ∈ L2(∂Ω), with w(τ) ∈ ∂j(γu(τ)) at almost every τ ∈ ∂Ω, such that∫
Ω
fh+

∫
Ω×Sm

gh = (Λu)(h) +
∫

∂Ω
wγh for all h ∈ H1(Ω).

To see that g(x, s) ∈ ∂ζs(v(x, s) − u(x)) at almost every (x, s) ∈ Ω × Sm, we let ψ1 = u and

ψ2 = u+ φ, with φ ∈ L2(Ω× Sm), in (23) to get∫
Ω×Sm

g(φ− (v − u)) ≤
∫
Ω×Sm

ζs(φ) for all φ ∈ L2(Ω× Sm).(26)
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As was seen in Lemma (4) , inequality (26) holds iff g(x, s) ∈ ∂ζs(v(x, s) − u(x)) at almost every

(x, s) ∈ Ω× Sm. For the converse, we first note that Tf,g ∈ ∂Γ1(u) + ∂Γ2(u), which in turn implies

(25). We can let φ = ψ2 − ψ1, with ψ2 ∈ L2(Ω× Sm) and ψ1 ∈ H1(Ω), in (26) to get∫
Ω×Sm

g(ψ2 − ψ1 − (v − u))

≤
∫
Ω×Sm

ζs(ψ2 − ψ1) for all (ψ1, ψ2) ∈ H1(Ω)× L2(Ω× Sm).(27)

Adding (25) and (27) gives (23). Hence, (f, g) ∈ ∂Z(u, v). 2

Lemma 6 Let σ : R → R be a monotone Lipschitz function such that σ(0) = 0. Assume |j(t)| ≤
c(t2 + 1) for all t ∈ R. If (fi, gi) ∈ ∂Z(ui, vi) for i = 1, 2, then

〈f1 − f2, σ(u1 − u2)〉L2(Ω) + 〈g1 − g2, σ(v1 − v2)〉L2(Ω×Sm) ≥ 0.

Proof: Assume (fi, gi) ∈ ∂Z(ui, vi) for i = 1, 2. Note that u1, u2 ∈ H1(Ω), and hence Lemma (1)

implies σ(u1 − u2) ∈ H1(Ω). Using Lemma (5) we have

〈f1 − f2, σ(u1 − u2)〉L2(Ω) + 〈g1 − g2, σ(v1 − v2)〉L2(Ω×Sm)

= −
∫
Ω×Sm

g1σ(u1 − u2) + (Λu1)(σ(u1 − u2)) +
∫

∂Ω
w1γσ(u1 − u2)

+
∫
Ω×Sm

g2σ(u1 − u2) − (Λu2)(σ(u1 − u2)) −
∫

∂Ω
w2γσ(u1 − u2)

+
∫
Ω×Sm

(g1 − g2)σ(v1 − v2).(28)

Note that Lemma (2) gives γσ(u1 − u2) = σ(γu1 − γu2). After simplifying (28) and using γσ(u1 −
u2) = σ(γu1 − γu2), we obtain

〈f1 − f2, σ(u1 − u2)〉L2(Ω) + 〈g1 − g2, σ(v1 − v2)〉L2(Ω×Sm)

= (Λ(u1 − u2))(σ(u1 − u2)) +
∫

∂Ω
(w1 − w2)σ(γu1 − γu2)

+
∫
Ω×Sm

(g1 − g2)(σ(v1 − v2)− σ(u1 − u2)).(29)

Let

r(t) =

{
σ′(t) if σ′(t) exists
0 otherwise.
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Note that Lemma (1) gives

(Λ(u1 − u2))(σ(u1 − u2)) =
∫
Ω
|∇(u1 − u2)|2r(u1 − u2) ≥ 0.

The second term on the right side of (29) is nonnegative since ∂j is a monotone graph, σ is a

monotone function, and σ(0) = 0. The last term on the right side of (29) is nonnegative since σ is

a monotone function and each ∂ζs is a monotone graph. 2

Definition 2 The operator C ⊂ L2(Ω)×L2(Ω×Sm) is defined as follows: (f, g) ∈ C(a, b) if there

exists (u, v) ∈ L2(Ω) × L2(Ω × Sm) such that (f, g) ∈ ∂Z(u, v), with a(x) ∈ ∂k(u(x)) at almost

every x ∈ Ω and b(x, s) ∈ ∂q(v(x, s)) at almost every (x, s) ∈ Ω× Sm.

Proposition 5 Assume ∂k and ∂q are functions, and |j(t)| ≤ c(t2 + 1) for all t ∈ R. Then C is

accretive in L1(Ω)× L1(Ω× Sm).

Proof: Fix η > 0 and assume (fi, gi) ∈ (I + ηC)(ai, bi) for i = 1, 2. Hence, for i = 1, 2 we have

(fi − ai, gi − bi) ∈ η∂Z(ui, vi),

with ai(x) = ∂k(ui(x)) at almost every x ∈ Ω and bi(x, s) = ∂q(vi(x, s)) at almost every (x, s) ∈
Ω× Sm. Let σε be the Yosida approximation to the maximal monotone signum graph, i.e.

σε(t) =


1 if t ≥ ε
t
ε if −ε < t < ε
−1 if t ≤ −ε.

Using Lemma (6) we have

〈f1 − a1 − (f2 − a2), σε(u1 − u2)〉L2(Ω) + 〈g1 − b1 − (g2 − b2), σε(v1 − v2)〉L2(Ω×Sm) ≥ 0.(30)

Inequality (30) implies

‖f1 − f2‖L1(Ω) + ‖g1 − g2‖L1(Ω×Sm)

≥
∫
|u1−u2|≥ε

|a1 − a2| dλ+ 1
ε

∫
0<|u1−u2|<ε

(a1 − a2)(u1 − u2) dλ

+
∫
|v1−v2|≥ε

|b1 − b2| d(λ× µ) + 1
ε

∫
0<|v1−v2|<ε

(b1 − b2)(v1 − v2) d(λ× µ).(31)
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Note that

lim
ε↓o

∣∣∣∣∣1ε
∫
0<|u1−u2|<ε

(a1 − a2)(u1 − u2) dλ

∣∣∣∣∣ ≤ lim
ε↓0

∫
0<|u1−u2|<ε

|a1 − a2| dλ = 0

Similarly,

lim
ε↓0

1
ε

∫
0<|v1−v2|<ε

(b1 − b2)(v1 − v2) d(λ× µ) = 0.

Note that the hypothesis implies

‖a1 − a2‖L1(Ω) =
∫
|u1−u2|>0

|a1 − a2| dλ and ‖b1 − b2‖L1(Ω×Sm) =
∫
|v1−v2|>0

|b1 − b2| d(λ× µ).

Therefore, taking limits in (31) gives

‖f1 − f2‖L1(Ω) + ‖g1 − g2‖L1(Ω×Sm) ≥ ‖a1 − a2‖L1(Ω) + ‖b1 − b2‖L1(Ω×Sm).

In other words, for each η > 0 the map (I + ηC)−1 : Rg(I + ηC) → L2(Ω) × L2(Ω × Sm) is a

contraction in the norm ‖ · ‖L1(Ω)×L1(Ω×Sm). 2

Proposition 6 Under the hypothesis of Proposition (4), we have Rg(I+C) = L2(Ω)×L2(Ω×Sm).

Proof: If (f, g) ∈ L2(Ω) × L2(Ω × Sm), then Proposition (4) gives (u, v) ∈ L2(Ω) × L2(Ω × Sm)

such that

(f, g) ∈ ∂Φ1(u, v) + ∂Φ2(u, v) + ∂Φ3(u, v) + ∂Φ4(u, v).(32)

It is easy to show (a, b) ∈ ∂Φ2(u, v) iff a, u ∈ L2(Ω), v ∈ L2(Ω × Sm), b = 0, and a(x) ∈ ∂k(u(x))

at almost every x ∈ Ω [1,19]. Similarly, (a, b) ∈ ∂Φ4(u, v) iff b, v ∈ L2(Ω× Sm), u ∈ L2(Ω), a = 0,

and b(x, s) ∈ ∂q(v(x, s)) at almost every (x, s) ∈ Ω× Sm. Therefore, (32) implies

(f − a, g − b) ∈ ∂Φ1(u, v) + ∂Φ3(u, v),(33)

for some a ∈ L2(Ω), with a(x) ∈ ∂k(u(x)) at almost every x ∈ Ω, and some b ∈ L2(Ω × Sm),

with b(x, s) ∈ ∂q(v(x, s)) at almost every (x, s) ∈ Ω × Sm. Since ∂Φ1 + ∂Φ3 ⊂ ∂Z, we have

(f−a, g−b) ∈ ∂Z(u, v). Using definition (2) we get (f−a, g−b) ∈ C(a, b), i.e. (f, g) ∈ (I+C)(a, b).

2

We define the closure of C, to be denoted by C, to be the closure of {((a, b), (f, g)) : (f, g) ∈
C(a, b)} in

[
L1(Ω)× L1(Ω× Sm)

]2
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Proposition 7 Under the hypotheses of Propositions (4) and (5), C is m-accretive in L1(Ω) ×
L1(Ω× Sm).

Proof: We will first show C is maximal, i.e. Rg(I+C) = L1(Ω)×L1(Ω×Sm). Fix (f, g) ∈ L1(Ω)×
L1(Ω×Sm). Choose (fn, gn) ∈ L2(Ω)×L2(Ω×Sm) such that (fn, gn) → (f, g) in L1(Ω)×L1(Ω×Sm).

Proposition (6) allows for (an, bn) ∈ L2(Ω) × L2(Ω × Sm) such that (I + C)(an, bn) 3 (fn, gn) for

each n. Note that {(an, bn)} is Cauchy in L1(Ω) × L1(Ω × Sm) since (an, bn) = (I + C)−1(fn, gn),

{(fn, gn)} is Cauchy in L1(Ω) × L1(Ω × Sm), and (I + C)−1 : Rg(I + C) → L2(Ω) × L2(Ω × Sm)

is a contraction in the norm ‖ · ‖L1(Ω)×L1(Ω×Sm) by Proposition (5). Hence, there exists (a, b) ∈
L1(Ω) × L1(Ω × Sm) such that (an, bn) → (a, b) in L1(Ω) × L1(Ω × Sm). Therefore, we have

((an, bn), (fn − an, gn − bn)) → ((a, b), (f − a, g − b)) in (L1(Ω)× L1(Ω× Sm))× (L1(Ω)× L1(Ω×
Sm)), with each ((an, bn), (fn − an, gn − bn)) in the graph of C. Hence, C(a, b) 3 (f − a, g − b),

i.e. (I + C)(a, b) 3 (f, g). We will now show C is accretive in L1(Ω) × L1(Ω × Sm). Fix η > 0

and assume (I + ηC)(ai, bi) 3 (fi, gi) for i = 1, 2. Then C(ai, bi) 3 (fi−ai
η , gi−bi

η ) for i = 1, 2.

We can choose sequences {(a1,n, b1,n)}, {(a2,n, b2,n)}, {(v1,n, w1,n)}, and {(v2,n, w2,n)} in L2(Ω) ×
L2(Ω × Sm) such that C(ai,n, bi,n) 3 (vi,n, wi,n), ‖(ai,n, bi,n) − (ai, bi)‖L1(Ω)×L1(Ω×Sm) → 0, and∥∥∥(vi,n, wi,n)−

(
fi−ai

η , gi−bi
η

)∥∥∥
L1(Ω)×L1(Ω×Sm)

→ 0 for i = 1, 2. Note that

‖(a1,n, b1,n)− (a2,n, b2,n)‖L1(Ω)×L1(Ω×Sm)

=
∥∥(I + ηC)−1(ηv1,n + a1,n, ηw1,n + b1,n)− (I + ηC)−1(ηv2,n + a2,n, ηw2,n + b2,n)

∥∥
L1(Ω)×L1(Ω×Sm)

≤ ‖(ηv1,n + a1,n, ηw1,n + b1,n)− (ηv2,n + a2,n, ηw2,n + b2,n)‖L1(Ω)×L1(Ω×Sm).

Taking limits in the above inequality gives

‖(a1, b1)− (a2, b2)‖L1(Ω)×L1(Ω×Sm) ≤ ‖(f1, g1)− (f2, g2)‖L1(Ω)×L1(Ω×Sm).

In other words, for all η > 0 the map (I + ηC)−1 : L1(Ω)× L1(Ω× Sm) → L1(Ω)× L1(Ω× Sm) is

a contraction. 2

5 The Evolution Equation

Under the hypotheses of Propositions (4) and (5), the nonlinear semigroup theory implies that

the Cauchy problem

w′(t) + C(w(t)) 3 f(t) , 0 ≤ t ≤ T ,
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w(0) = w0 ,

has a unique integral solution w ∈ C([0, T ];L1(Ω)×L1(Ω× Sm)), provided f ∈ L1([0, T ] : L1(Ω)×
L1(Ω × Sm)) and w0 ∈ Dom (C). This follows because C is m-accretive in the Banach space

X = L1(Ω)×L1(Ω×Sm). For such an operator, one can approximate the derivative in the evolution

equation by a backward-difference quotient of step size h > 0 and the function f(t) by the step

function fh(t) (= fh
k for kh ≤ t < (k + 1)h) and get a unique solution {wh

k : 1 ≤ k} of

wh
k − wh

k−1

h
+ C(wh

k) 3 fh
k , k = 1, 2, . . . ,

with wh
0 = w0. Since C is m-accretive, this scheme is uniquely solved recursively to obtain wh

k and,

hence, the piecewise-constant approximate solution wh(t) (= wh
k for kh ≤ t < (k + 1)h) of the

Cauchy problem. The fundamental result is the following.

Theorem (Crandall-Liggett). Assume C is m-accretive, w0 ∈ D(C), f ∈ L1([0, T ], X) and that

fh → f in L1([0, T ], X). Then wh → w(·) uniformly as h→ 0 and w(·) ∈ C([0, T ], X).

Thus w(·) is an obvious candidate for a solution of the Cauchy problem. It can be uniquely

characterized as an integral solution. This rather technical characterization does not require any

differentiability of the solution. However, if f is Lipschitz continuous and w0 ∈ D(C), it is known

that w is also Lipschitz continuous. Moreover, if f1, f2 ∈ L1([0, T ], X) and w1, w2 are integral

solutions of

w′j + C(wj) 3 fj , 0 ≤ t ≤ T , j = 1, 2 ,

then

‖w1(t)− w2(t)‖ ≤ ‖w1(0)− w2(0)‖+
∫ t

0
‖f1(s)− f2(s)‖ ds , 0 ≤ t ≤ T .

For an introduction to the abstract Cauchy problem in Banach space and its applications to initial-

boundary-value problems for partial differential equations, see [3]. For further details, refinements

and perspective, see [1,4,7].
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