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INTRODUCTION

We shall consider initial-boundary-value problems for partial differential equa-
tions of the form

(1) Ug = Uyx ™ Uy -
Such equations arise in a discussion of classification. Specifically, every
linear second-order constant-coefficient partial differential equation in n vari-
ables can be reduced to the form

k J

- u +au,+bu = f(X,¥,t,...).

i=1 %% 4= YiYi Ot
The general parabolic case is k+ j+1 = n; we are interested in the non-normal
case of kj # 0 which we call hyper-parabolic.

Equations of this type have arisen in diverse non-standard applications [1,4,7-11,
15], most of which require a solution subject to classical initial and boundary
conditions on a space-time cylinder. However such a problem is not well posed but
is "hyper-sensitive" to variations in the data [12]. It is clear that neither the
initial-value nor the final-value problem is well posed for (1) and, moreover, the
boundary-value problem for stationary solutions is 111 posed.

Our plan is to develop some elementary notions of generalized solution of an ab-
stract model of (1) as an evolution equation in Hilbert space. The Cauchy problem
can be approximated by a quasi-reversibility method [5]. Then we present some
well posed problems for this equation, and these results suggest a more natural
method of approximating solutions of the i11 posed Cauchy problem. This new
approximation scheme we call the gquasi-boundary-value method.

INITIAL-VALUE PROBLEM

Hereafter A and B denote self-adjoint non-negative operators on a Hilbert
space H, and we assume their resolvents commute. Thus -~A generates a (holo-
morphic) semigroup of contractions {exp(-At):t >0} on H; their inverses are
unbounded.operators exp(At) which could also be obtained by the spectral theorem.
If uecC” is a solution of the evolution equation

u'(t)+Au(t) =0, 7<t

then é% exp(-A(t-s))u(s) = 0, hence, £(t) = exp(-A(t-s))u(s), 7 <s<t, is

independent of s. Thus one obtains the semi-group representation
u(t) = exp(-A(t-s))u(s), s <t; the operators exp(-A(t-s)) are the propaga-
tors for the evolution equation and their continuity implies the initial-value
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problem is well posed.
Proceeding similarly for the hyper-parabolic equation
(2) u'(t)+ Au(t)- Bu(t) = 0,

we see that if ue C1 is a solution on the interval [7,t], then

g%-exp(-A(t- s)yexp(-B(s-7))ufs) = 0, 7 <s<t, so

(3) E(t,7) = exp(-A(t-s))exp(-B(s-7))u(s), 7 <s<t
is independent of s. Thus, we are led to define a weak solution of (2) on [r,t]

as a continuous H-valued function for which (3) holds, i.e., the right side of
(3) is independent of s € [7,t].

Lemma. If u 1is a weak solution on [r,t] then it is a weak solution on each
[rl,tll C [r,t] and then &(t,7) = exp(-A(t- tl))exp(-B(rl— T))S(tl,rl), and

u(t) = £(t,t7).

If u is a continuous H-valued function on [0,11, then u is a weak solution
iff exp(-Bt)u(t) = exp(-At)u(0), 0 <t < 1. Thus the initial-value problem of
finding a weak solution of (2) on [0,1] with u(0) = f given in H s equiva-
lent to

uec(10,11,H) with exp(-Bt)u(t) = exp(-At)f, O0<t<1.

Since each exp(-Bt) is one-to-one, there is at most one solution of the initial-
value problem. Also, the representation via unbounded operators as u(t)

= exp(Bt)exp(-At)f shows the initial-value problem is not well posed. Consider-
ing existence, we see that if f € Rg{exp(-B)} = dom{exp(B)}, then

u(t) = exp(-At) - exp(-B(1-t))- exp(B)f

defines a strong solution (c®) of the initial-value problem. More generally we
have the following

Proposition 1. There exists a weak solution of the initial-value problem if and
only if exp{-A)f = exp(-B})g for some g €H, i.e., f &€ dom{exp(B-A)}.

QUASI-REVERSIBILITY METHOD

Since the lack of well-posedness of the initial-value problem for (2) is due to
the unboundedness of B, we use a Q- R method [3,5,13,14] to obtain an ap-
proximate solution. First replace B by its bounded Yosida approximation

B_= B(I+-sB)'1, e >0, and solve the equation (2) for exp((B_-A)t)f, 0<t<1.
The final-value exp(BE— A}f belongs to Rg{exp(-A)} so we obtain a (strong)
solution of (2) backward from here,

uE(t) = exp((A-B)(1- t))exp(BE— A)F
= exp(-At)exp(-B(1- t))exp(BE)f , 0<t<1,

and it satisfies u€(0) = exp(B - B)}f. Using results from [14] we obtain the
following €

Theorem 1. For any f €H, elimo u (0) = f and HuE(O)H < Ifll. There exists a
(weak) solution u of the initial-value problem for (2) on [0,11 if and only if
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elipo {ue(t)} exists in H for all t € {0,1], and then Ellyo ue(t) = u(t).
This QR-method is theoretically incisive: there exists a solution if and only if
it converges. It is slightly more subtle than the usual case (A = 0) in [14]
since the method must give a u.(1) € Rg{exp(-A)} in order that the backward prob-
lem have a strong solution. The method is always stable and convergent at t = 0,
but only at t = 0. For example, luc(1}l may grow like lexp(1l/e)), so as a
numerical method it is essentially worthless. Even if one uses log-convexity
estimates to stabilize the method [2,6], the use of initial-value or final-value
problems in the procedure is not natural for (2).

BOUNDARY-VALUE PROBLEM

Suppose there is a weak solution of (2) on [0,1]. From the Lemma above it follows
that £(0,1) and hence the solution u will depend on both u(0) and wu(l).

One need only determine the domain of influence of u on & through the formulae
of the Lemma. This suggests that a boundary-value problem on the interval [0,1]
is more appropriate than an initial-value problem.

We can substantiate this observation as follows. First let C be a self-adjoint
operator whose spectrum is unbounded in both positive and negative real numbers,
thus € = A-B as above where A and B are the positive and negative parts of
C, respectively. We seek a representation of a solution of

(4) u'(t)+cCu(t) =0, O0<t<1,

in the form u(t) = fP exp(Cz)U(t,z)dz. 1In order to choose the contour T in ¢
so {exp(Cz):z €T} 1is bounded, we take z = ir, 7 € IR, so we have

(5) u(t) = fIR exp(irC)U(t,7)dr .
Substitution of (5) into (4) yields
T = «
fIR exp(irc)(Ut+~iUT)dT+ (1/1)exp(irClu(t,7) ,
T = -x

so we need require the kernel U(t,7) to satisfy the Cauchy-Riemann equation in
the sTab 0 <t <1 and to vanish at 7= %=, Thus U will be determined by its
remaining boundary-values, U(0,7), U(1l,7), -» <7 < +». These in turn are de-
termined by u(0) and wu(l) through (5). These formal calculations can (and
will) be made precise elsewhere but they already suggest that the equation (1) is
elliptic and that the following problem is well posed. The boundary-value problem
is to find a weak solution u of (2) on [0,11 for which au{0)+ bu{l) = f.

Here fe&H and a,b € IR are given.

Proposition 2. If u is a solution of the boundary-value problem then
(aexp(-B)+bexp(-A))u(t) = exp(-At)exp(-B(1- t))f, 0<tL1l.
If also a,b >0 and not both are zero, then there is at most one solution. If

both a and b are strictly positive then there exists a solution u for each
fE€H and it satisfies

u(t) <tfrzal"t, o<t<1.

QUASI-BOUNDARY-VALUE METHOD

Consider again the initial-value problem for (2) on the interval [0,1] with
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u(0) = f. The quasi-reversibility method of approximation was to reguiarize the
problem by perturbing the equation, i.e., replace B by B.. The method suggested
by Proposition 2 is to regularize the problem by perturbing the initial condition,
i.e., replace it by the boundary condition

(6) u{0)+ eu(l) = f.

Thus for each ¢ >0 we let u, be the solution of the boundary-value problem

(2), (6).

Theorem 2. For any f € H, E1lm0 uC(O) = f. There exists a solution u of the
initial-value problem for {(2) on [0,1] if and only if E]lmo {us(t)} exists in

H for all t e [0,1], and then 11@0 ue(t) = u(t). The solutions u_ of (2),
(6) satisfy the estimates €

(7) b ()0 <Ifl/et,  0<t<1, e>o0.

The regularization procedure of Theorem 2, the QB-method, and the QR-method of
Theorem 1 both approximate with a well posed problem for each ¢ > 0. Moreover,
the estimate (7) is (M1/e) at t =1 in contrast to exp(l/e)) in the QR-
method, so the (B-method is reasonable for numerical implementation. However the
regularized problems in the QB-method are global in t, so marching methods and
their resultant sparse matrices and reduced storage requirements are not directly
available in numerical work. Our preceding remarks on the "elliptic" nature of
these equations suggest that such difficulties may be implicit in the problem, not
just this method.

There is a fundamental deficiency in the use of Theorem 2 to actually find a solu-
tion u from data f; namely, the data is never measured exactly. This measure-
ment error can be handled if we stabilize the problem by considering only those
solutions which satisfy a prescribed global bound. Whereas Theorem 2 merely guar-
antees a good approximation at the initial time t = 0, we shall get a global
approximation on t € [0,1].

Theorem 3. Let u be a weak solution of (2) on [0,1]. Let M>1,6 >0, and
f € H be given such that Hu{0)-fll <& and u(l) <M. Choose e =M/ and
let u_. be the solution of the boundary-value problem (2), (6). Then we have the
estimate

hu(t) - u_(t)I < 2, o<t<,
for the error.
The procedure above is the stabilized quasi-boundary-value method. It is appropri-

ate in applied problems where one knows from physical considerations there is a
solution with a bound but the data u(0) 1is not known exactly.
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