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Abstract

The linear transport equation is supplemented with a hysteresis operator to obtain
a local model of adsorption—desorption. The resulting nonlinear initial-boundary-value
problem is shown to have a unique differentiable global solution when the hysteresis
functional has a symmetric convex graph. An explicit solution is given for an elementary
example, and a formula is given for the representation of smooth cases of such functionals.

1 Introduction

We study the partial differential equation

9 =0, v=Mu), (1)

0
~(u+v)+ g

ot
as a generic model for the transport and adsorption of a chemical of concentration u(z,t)
carried in a solution with constant (unit) velocity in a tube z € (0,L) for ¢ > 0. Here
M(-) is a rather general functional describing adsorption and desorption of the chemical
on the particles of solid filling up the tube. In the classical case M(-) is given by an
isotherm, a real-valued function corresponding to an experimentally determined relation
between the concentration v(x,t) of the adsorbed species on the surface of the particles
and the concentration u(z,t) in solution. In the general situation considered here, the
adsorption—desorption functional M(-) exhibits hysteresis, i.e., the relations between u
and v for the cases when u is increasing (adsorption) and decreasing (desorption) follow
different curves. A typical adsorption-desorption graph is presented in Figure 1 (compare
with the graphs in [16]). The motivation for our study comes from applications in chemical
and geological engineering. For example, the chromatographic elution process is modeled
by (1); see [21, 20, 13] for a general study. Here one studies the relationship between the
concentration input, u(0,t) = p(t), and the break—through curves, u(L,t), t > 0. Hystere-
sis coupled to transport phenomena occurs also in the modeling of oil-water interaction
[27] and of waste treatment in subsurface reservoirs [10]. The phenomenon of hysteresis in
adsorption has been observed and studied for many years (see [16, 21, 11, 7]), frequently
in parallel with capillary condensation hysteresis (see [9]). See also [3] for more rheo-
logical models of adsorption—desorption hysteresis. To our knowledge there has been no
detailed mathematical study beyond the general theoretical formulation of the transport
problem subject to adsorption—desorption hysteresis, and this is what we initiate here.
A more general problem, including kinetics, diffusion, and multiscale phenomena will be
discussed elsewhere.



Figure 1: Typical adsorption/desorption hysteresis graph.

The corresponding classical initial-boundary-value problem
(u+mu)) +us =0, u(0,t) =9(t), u(z,0)=0 (2)

in which m(:) : R™ = RT is a smooth function has been thoroughly investigated by
numerous authors, see [20, 8] for analysis with applications to adsorption problems (also
multicomponent). Assume the inlet concentration ¢(t) is a Gaussian impulse. For the
case of a Langmuir isotherm, m(u) = ;3% , the resultant concentration profiles consist of a
shock discontinuity followed by a rarefaction wave developing in finite time and travelling
with speed a = m When m(-) is not convex, e.g., as with a BET isotherm, more
complicated profiles arise. Most cases are well understood, numerically treatable and
used by engineers (see e.g. [14]). The theory of such conservation laws as (2) is rather
complete, even in the case when m(-) is not a single-valued function but rather a general
monotone graph (see below). These have been studied in [6, 2, 12, 5, 24] where one can
find general theorems on existence and uniqueness of solutions in an appropriately weak
sense. One obtains estimates only in the space L'(0,L), so it is necessary to use the
theory of m-accretive operators in a general Banach space, and from this we obtain only
a very weak notion of an integral solution u € C(0,T;L'(0,L)). Such solutions are not
necessarily differentiable or even within the domain of the operator at any time ¢ > 0.

Our goal in this work is to study the case where the functional M is multivalued
because its values v(t) = M(u)(t) depend not only on the current value of u(-,t) at t > 0
but on the past history u(-,s), 0 < s < t. The equation (1) with a general hysteresis
functional M has previously been presented, e.g., in [26], where integral solutions were
obtained from L' techniques. Here we obtain differentiable solutions by using the L2-
theory of evolution equations. In addition to the usual formulation of the existence—
uniqueness results, we obtain a second one by switching the variables  and ¢ to represent
the solution by a semigroup of break-through curves. This second formulation could not
be achieved if there were an additional viscosity term in (1), whereas the first formulation
extends easily as indicated below.

In order to illustrate the typical features of such a history—dependent process, we
study here the case that arises when M is taken to be a representative local part of the




graph in Figure 1. We compute in Section 2 an explicit solution, and in Section 3 we
prove the existence and uniqueness of strong (differentiable) solutions for the elementary
case of those hysteresis functionals whose sides are bounded by parallel lines, a result
that does not follow from the aforementioned references. It will be obtained from the
theory of maximal monotone or m-accretive operators in Hilbert space, and as such it
is not comparable to the L! results above. In Section 4 we discuss a somewhat more
general case of convex adsorption-desorption hysteresis functionals and indicate the cor-
responding extension of the results of Section 3. The construction of the functional M
in the convex case is obtained by taking a weighted sum of graphs of the elementary
type of Section 3, with different switching points. This is known as a Prandtl-Ishlinskii
construction [26]. The geometric representation of M in terms of the elementary func-
tionals means that the increasing curves are convex and the decreasing ones are concave,
so that the distance between them is necessarily nonzero. These complementary types of
the bounding “isotherms” prevent the formation of shocks. It is for this reason that such
regular solutions can be obtained for (1) with these nonlinear hysteresis functionals.

2 An explicit analytical solution
Here we consider a simple example in the form
(u+v)+u, =0, v=M(u), z€(0,L),t>0 (3)
with the boundary condition specified at the left end of the tube by
u(0,t) = ¢(t), t>0,
and the initial condition
u(z,0) = v(z,0) =0, =z € (0,L).

The functional M(-) constructed here is called a simple play. This example arises from
the general situation in Figure 1 if we consider only small variations of u which remain
inside the hysteretic loop. For the sake of exposition the sides of the loop have unit slope,
and the graph is shifted down to the origin. This simplification allows us to concentrate
on the special character of the elementary history—dependent process modeled by M.

We shall implement a very useful realization of the hysteresis functional, M(-), in (3).
It will be characterized by the evolution equation

v +sgn (v —u)>30, t>0. 4)
The second term in this equation, sgn—!, is the inverse of the signum graph, and it is the
mazimal monotone graph defined by sgn=!(—1) = (—00,0], sgn=1(1) = [0, 0), sgn~!(u) =
{0}, w € (—1,1). Thus (4) implies the constraint

—1<v—-—u<l1.

The values of v; are then allowed to take any positive value when v —u = —1 (but this
means v = u — 1 and so v; = u;), any negative value when v —u =1 (here v =u + 1 and
again v; = uy), and vy = 0 if the strict inequality holds in the constraint. In summary
this means v; = u; or 0, and inserting those values into the first equation gives

0 u-1l<v<u+1
U+ Uy +¢ uz v=u-+1decreasing p =0.
uz v =u—1increasing



region | descr u(z,t) v(z,t)

A t<z 0 0

B r<t<z+1 t—=z 0

C r+l<t<22z+1,2<4 1 0

v z+1<t<z+5z>4

D 20+1<t<3z+3,2<4| t-—2a t—2z—1

E Sz+3<t<z+5z<4 | 6—(t— 1) 2— 1z

F T+5<t<Sx+5x2<2 |{8+z—1t)|2—gz,0<4
z+i<t<z+8zx>2 0,z >4

G ST+5<t<2r+6,r<2| 6-t+2z | T—t+2z

H 2 +6 <t,x <2 0 1

T+8<t,x>2

Figure 2: Characteristics in (z,t) plane.




This means that the speed of the wave front in the first case is a = 1, since only u
values are modified and v remains locally constant, and in the next two casesit is o = 1/2
since the modification of values of u across the wave must be accompanied by the same
modification of v. That is, v is “dragged” behind u by the constraint. It is also necessary
for the constraint to hold at the initial time, so we set v(z,0) = 0.

For an explicit example, let us take the boundary condition

t 0<t<3
u(0,t) =)= 6—t 3<t<6
0 6 <t.

This choice of the boundary input data will drive the solution (u(t),v(t)) once around
the loop (see Figure 1).

In order to compute the exact solution, we use the method of characteristics. If our
original equation was u; + au, = 0, then the solution subject to the above boundary
condition would preserve its shape and travel with speed a and u(z,t) = ¢t — ém),
with characteristics in the form ¢ — ém = £. In our case, with different values of «,
the characteristics must cross and this leads to discontinuities in the derivatives of the
solution. The solution itself remains continuous. The analysis of this example presented
in Section 3 leads to the same results.

The computations of the solution along with the sketch of the characteristics are given

in Figure 2.

3 A Linear-Sided Play Model

Our objective in this section is to establish general results on the existence and uniqueness
of solutions to the initial-boundary-value problem for (3). We begin by recalling some
relevant definitions. A (possibly multi-valued) operator A in a real Hilbert space H is a
collection of related pairs [z,y] € H x H denoted by y € A(z); the domain Dom(A) is
the set of all such z and the range Rg(A) consists of all such y. The operator A is called
accretive if for all y; € A(x1), y2 € A(z2), and € > 0, we have

lz1 — 22| < (|21 — 22 +e(yr —y2)|| -

This is equivalent to requiring that (I +¢A) ! be a contraction on Rg(I +¢A) for every
€ > 0. This in turn is equivalent to requiring

(y1 —y2, 21 — 22)u >0 V1,22 € Dom(A), Vy1 € A(x1), Vy2 € A(z2) .

If additionally Rg(I +eA) = H for some (equivalently, for all) ¢ > 0, then A is mazimal,
and we say A is m-accretive. For such an operator, the Cauchy problem

{ w'(t) + A(u(t)) 3 f(t),t>0 (5)
u(0) = Uo

is known to be well-posed. The general result for this abstract Cauchy problem is the
following. See [15, 1, 4, 22].

Theorem 3.1 (Kato-Komuro—Dorroh) Let A be m-accretive in the Hilbert space H. If
T > 0, ug € Dom(A) and f € WH(0,T; H), then there erists a unique solution u €
Wb°(0,T; H) of the Cauchy problem (5) with u(t) € Dom(A) for all 0 <t < T, hence,
A(u(-)) € L>(0,T; H).

We shall realize our initial-boundary-value problem as such a problem in an appropri-
ate function space. Moreover, we shall do this in two different ways and obtain thereby



two notions of solution which differ in their regularity. For perspective, we note that
Theorem 3.1 applies directly to the linear initial-boundary-value problem

ug+uy =0, u(z,0)=19(z), z€(,L), u0,t)=0

for which the solution is given by u(z,t) = ¥(zr —t) for 0 < t < z and u(z,t) =
0for 0 < z <t, £ < L. Here the operator A = 9, is m-accretive on the domain
D(A) = {u € H*(0,L)|u(0) = 0 }, and the initial condition is chosen with ¢ € D(A).
We see that the corresponding semigroup operators are just rightward translation, so
the solution at each time ¢ > 0, u(-,t), has the same smoothness as the initial data,
1), just as is specified by Theorem 3.1. When the initial condition u(z,0) = () is
replaced by the boundary condition u(0,t) = ¢(t), then the setup of the above problem
follows after the substitution w(z,t) = u(z,t) — p(t). That is, we exchange the problem
with nonhomogeneous boundary condition for the corresponding initial-boundary-value
problem,
Wt + Wy = _Qol(t)a ’lU(O,t) =0, ’U)(.’L',O) = _90(0)

We shall assume that ¢(0) = 0 and that ¢ € W21(0, L), so Theorem 3.1 applies. Note,
however, that this construction does not give the optimal regularity, since the solution is
exactly as smooth as the boundary data: Theorem 3.1 requires here one more derivative
on ¢(-) than is necessary.

For our first formulation of the initial-boundary—problem as an abstract Cauchy prob-
lem (5), we let ¢(-) be a maximal monotone graph in R. In our application to (3) and (4)
it will be the signum inverse graph, c(-) = sgn~!(-), and our system becomes

ut+ Opu—c(v—u) 30
ve+ce(v—u)>0
u(0,1) = o(t)

u(z,0) = 0 = v(z,0).

Here and below, it is understood that one takes the same choice from the multivalued
¢(+) in each component of such a system. As before, we replace u by u + ¢ and also v by
v + . This gives the problem with homogeneous boundary conditions

ug + Lu — c(v —u) 3 —¢'(t) (6)
v+ (v —u)d —¢'(t) (7)

u(t) € Dom(L) (8)

u(z,0) = 0 = v(x,0) ©))

where we have denoted by L the m-accretive linear operator on H = L?(0, L) which is a
realization of 8, with the domain Dom (L) = {u € H*(0,L) : u(0) = 0}. This system is

—

in the form of an evolution equation @' + A(#@) > f The corresponding resolvent equation,
@+ A(@) > f, takes the form

u+Lu—clv—u)d f (10)
v+e(v—u)dy, (11)

in which @ = [u,v] and f= [f,9]- This suggests that we set
Dom(A) = {[u,v] € Dom(L) x L*(0,L): v —u € Dom(c)}

and define [f, g] € A([u,v]) if £, g € L*(0,L), g € (v —u), and Lu = f +g.



Let’s show that this operator A is accretive in H x H, H = L%*(0,L). If we have
[f1, 91] € A([ur, v1]) and [f2, g2] € A([uz2,v2]), then

(fi = fo,ur —u2)r2 + (g1 — g2,v1 — v2)12 =
(L(u1 — u2),u1 - u2)L2 + (91 —g2,V1 — V2 — U1 + u2)L2.

Since L is accretive, the first term on the right side is nonnegative, and the second is
nonnegative similarly, since ¢(-) is monotone. Next we verify that I + A is onto. By
eliminating v from the resolvent system, we obtain the equivalent equation

utLutu+(T+e) Hg—u)=f+g (12)
for which the second component is given by
v=u+ T +c) (g —u).

Since the left side of (12) is the sum of an m-accretive operator and an accretive Lipschitz
operator, it is always solvable, so the resolvent system has a solution. That is, A is m-
accretive, and we obtain the following result.

Theorem 3.2 If p € W21(0,T) and ¢(0) = 0, then there is a unique solution of (6-9)
with u, v € W1H°°(0,T; L?(0, L)).

Note that for this solution we have uy, u,,v; € L*(0,T; L%(0,L)). Furthermore, all of
the above carries through for the case of a general m-accretive operator L on L2(0, L).
In particular, it permits the example of diffusive transport, Lu = u, — pg, with g > 0
and appropriate boundary conditions on Dom(L).

For our second formulation of the initial-boundary—problem as an abstract Cauchy
problem, we treat the spatial variable x as another time variable, and therefore we rename
it: £ = 7. Then the system is given by

Ur +ug—c(v—u)30 (13)
ve+ce(v—u)>0 (14)
u(0,t) = p(t) (15)

u(1,0) =0 = v(7,0). (16)

We shall regard this as an evolution in the first component on H = L%(0,T). That is,
this system is of the form u' + A(u) 3 0 for an appropriate definition of A, and then the
corresponding resolvent equation, u + A(u) 3 f, takes the form

utu—clv—u)> f (17)
vit+celv—u)30, 0<t<T, (18)
u(0) = 0 = v(0). (19)

In order to define A, we set Dom(A) = {u € H'(0,T) : u(0) = 0}. Note that for each
such u € Dom(A), the Cauchy problem

(v—u)y+cv—u)d—uy (v—u)(0)=0

has a unique solution v € H'(0,T). Then we define A(u) = u; + v; with u € Dom(A)
and v as given.

We shall verify that A is m-accretive on L2(0,T). If u;, us € Dom(A) and if vy, v2
are defined as above, then we compute

((u1 +v1)e — (u2 + v2)e,u1 — u2)L2(0,7)-
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By rearranging terms and integrating, we obtain

Sur(T) — ()P + ((00); — @)1 — w2201

and then by adding and subtracting (v; — vs) to the right side of the second term and
again integrating, we have

1 1
§|u1(T) - UQ(T)|2 + §|U1(T) — U2(T)|2 + ((Ul)t - ('l)Q)t,Ul —v1 — U+ 'UQ)L2(07T).

Since ¢(-) is monotone, it follows from the definition of v; and v, that the last term is
nonnegative, hence, we have shown that

(A(u1) — A(u2),u1 —u2)r2(0,1) > 0,

so A is accretive. In order to verify the range condition, we consider the resolvent equation
above with f € L?(0,T). But this system is an evolution equation on the product space
L%(0,T) x L?(0,T), and the corresponding operator is a subgradient, so the system has a
unique solution [u,v] € H*(0,T) x H*(0,T) with 4(0) = v(0) = 0.

Since A is m-accretive, we obtain the following.

Theorem 3.3 If o € WY2(0,T) = H(0,T) there is a unique solution of (6-9) with
uz € L>(0,L; L*(0,T)), and for all x, u(x,-) € H*(0,T), u(z,0) = 0.

Remark 1 This second formulation represents the solution as the family u(z,-) of break—
through curves. These comprise the data that is normally observed and recorded in ex-
periment. Finally, the regularity assumption on ¢(-) is optimal.

4 A Convex-Sided Play Model

Here we shall extend the preceding existence and uniqueness results to the case of convex-
sided play. As above, this will be done for each of two formulations as an abstract Cauchy
problem. Let {A, u} be a positive finite measure space and {c,(-) : @ € A} be a family of
maximal monotone graphs in R. We assume that the resolvents {(I +c,) ! are strongly
measurable, i.e., that a — (I +¢4) () is measurable on A for each z € R. For our first
formulation with this notation the system that we consider is given by

%(u + /Avad,ua) +0,u=0 (20)
v+ ca(v®—u)20, ae A (21)
u(0,1) = o(t) (22)

u(z,0) = 0 = v*¥(=,0). (23)

As before, we replace u by u + ¢ and each v* by v* + ¢ to obtain the corresponding
problem with homogeneous boundary conditions

ug + Lu — / ca(v® —u)dps 3 —¢'(t)
A

v + (v —u) > —¢'(t), a€A

u(t) € Dom(L)

u(z,0) = 0 = v*¥(=,0).

We have denoted by L an m-accretive linear operator on H = L?(0,L) . This system is
in the form of an evolution equation; we define

Dom(A) = {[u,v] € Dom(L) x L*((0,L) x A) : v* —u € Dom(c,), a € A}



and the operator A by [f,g] € A([u,v]) if f € L*(0,L), g € L*((0,L) x A), g% €
ca(v® —u), and Lu = f + [, g*dps. Then we show as before that this operator A is
accretive, but here in the space H x H, H = L*(0,L), H = L*((0,L) x A).

Theorem 4.1 If ¢ € W?1(0,T) and ©(0) = 0, then there is a unique solution of (20)
with u, v € WH(0,T; L*(0, L)) for almost every o € A.

This solution satisfies u¢, ug, v € L*°(0,T;L*(0,L)).
For the second formulation we denote the spatial variable by x = 7, and then the
system is

Ur + up — / ca(v® —u)due 30
A

vy + (v —u) 20

u(0,t) = (1)

u(1,0) =0 =v%(7,0).

We define A on the same domain Dom(A) = {u € H'(0,T) : u(0) = 0} as before. For
each such u € Dom/(A), the Cauchy problem

(v —u) + ca(v® —u) 3 —ug, (V¥ —u)(0) =0
has a unique solution v® € H'(0,T), and then we define
Au) = uyg +/ vi¥dp,, w€ Dom(A),
A

with v® given as above. Finally, we check that A is m-accretive on L2(0,T), so we have
the following.

Theorem 4.2 If ¢ € WY2(0,T) = HY(0,T) there is a unique solution of (20) with
uy € L®(0,L; L?(0,T)), and for all x, u(x,-) € H(0,T), u(z,0) = 0.

In our applications we shall employ the collection of elementary maximal monotone
graphs ¢, (-) which are constructed by rescaling the signum inverse: cq(s) = sgn™'(2s+1)
for a@ € A. For an instructive example, we choose A = {1,2,3} with discrete measure p
given by

W)=, w2)=1, wd)=1

Then the hysteresis functional v = M(u) is given by the system

ivl +co(vt —u) 30,

dt
iv2 +e(v®—u)30
dt ’
d
E?ﬁ + ca(v® —u) 30,
1 1
o(t) = Zvl(t) + ivz(t) +03(t).

Note that the first equation is equivalent to v! = u. Suppose u(t) starts at 4(0) = 0 and
increases until © = 3. Then

v (t) = (u(t) —a)", a€A,
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0. 57
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Figure 3: Convex-sided hysteresis graph, slopes indicated, u is the input, v = ivl + %’Ug + v
is the combined output.

where zt denotes the positive part of x. Thus v(-) follows the convex piecewise linear
curve with slope 1 on [0, 1], slope 2 on [1,2], and slope I on [2,3]. If u(t) then decreases
from 3 down to 0, then v(-) follows the symmetric piecewise linear concave curve with
slopes i on [2,3], slope % on [1,2], and slope % on [0,1] back down to v = 0. This is
indicated in Figure 3. Similarly, we can recover any such bounding curve on the right
consisting of piecewise linear sides with increasing slopes followed by the corresponding

symmetric curve on the left.

By taking a large number of such components, we can approximate any such center—
symmetric convex region which is bounded on the right by an increasing curve and on the
left by the corresponding symmetric decreasing curve. Moreover, in order to construct
another useful class of such functionals, let the family of hysteresis functionals {v*(-)} be
given as above for a € A = [0, a] for some a > 0, that is,

ava(t) + co(v*(t) —u(t)) 3 0.

For any convex function 9 (-) € W2'(0, a) with 1(0) = 9'(0) = 0, we let u be the positive
measure on [0,a] with du, = 9" (a)da so that our hysteresis functional v = M(u) is
given by

10



Similarly, if u(t) is decreasing from a to 0, v(t) follows the center-symmetric curve ac-
cording to

v(t) = ¢(a) — P(a — u(t)).

This provides an explicit formula for the representation of any such smoothly-bounded,
convex and center-symmetric hysteresis functional as a continuous weighted sum or in-
tegral of the elementary functionals {v*(:)}, and then it can be used in the transport
system (1).
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