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Abstract. (Preliminary Report.) The model formulation and existence theory is de-
scribed for diffusion of a barotropic fluid through a partially saturated poroelastic com-
posite medium consisting of two components. This includes the Barenblatt-Biot double-
diffusion model of elastic deformation and laminar flow in a fissured medium, such as
consolidation processes in a system of fissures distributed throughout a matrix of highly
porous cells. Nonlinear effects of density, saturation, porosity and permeability varia-
tions with pressure are included, and the seepage surfaces are determined by variational
inequalities on the boundary.

1. INTRODUCTION

The classical linear model of transient flow and deformation of a homogeneous fully-
saturated elastic porous medium depends on an appropriate coupling of the fluid pressure
and solid stress. The total stress consists of both the effective stress given by the strain
of the structure and the pressure arising from the pore fluid. The local storage of fluid
mass results from increments in the density of the fluid and the dilation of the structure.
The combinations of the fluid mass conservation with Darcy’s law for laminar flow and
of the momentum balance equations with Hooke’s law for elastic deformation result in
the Biot diffusion-deformation model of poroelasticity. Its application to consolidation
requires the quasi-static modification in which the dynamic momentum equations are
replaced by the corresponding equilibrium equations. See [12], [13], [21], [3], [18], [34].

The description of flow in a rigid fully–saturated but heterogeneous medium often re-
quires several distinct spatial scales for porosity and permeability. The simplest and most
frequently used model which allows for qualitatively different properties is the Barenblatt

double–diffusion model, which consists of the combined effects of two distinct compo-
nents in parallel. Both of these components occur locally in any representative volume
element, and they behave as two independent diffusion processes which are coupled by
a distributed exchange term that, in its simplest form, is proportional to the difference
in pressure between fluids in the two components. In the special case which is used to
model naturally fractured media, the first component of the model is the highly devel-
oped fracture system and the second is the porous matrix structure. See [6], [4], [8],
[30].
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The basic ideas of poroelasticity continue to play an important role in the more complex
models of double–diffusion combined with deformation. Since both of the pressure fields
contribute to the stress field of the structure, it is necessary to incorporate Biot’s concepts
into the Barenblatt model. The momentum equations contain contributions to total stress
from each of the two pressure fields, and the two equations of fluid transport follow from
the continuity of fluid mass and consideration of the effects of dilation of the structure on
the flow in both of the components. The fluid transport within this composite deformable
porous medium is described by a pair of pressure equations for diffusion in the respective
components of the medium together with an exchange term. This simplistic combination
of the Barenblatt double–diffusion model with the Biot diffusion–deformation model has
been developed and used extensively in the engineering literature. See [10], [11], [31],
[18], [28], [9], [19], [25].

Mathematical issues of model development and the theory of well–posedness of the
initial-boundary-value problem for a homogeneous fully–saturated elastic porous medium
were first studied in the fundamental work of [3]. They derived a non-isotropic form of
the Biot diffusion–deformation system by homogenization and then obtained a strong

solution. In the later paper of [32] the weak solution is obtained in the first order Sobolev
space H1(Ω). The existence, uniqueness, and regularity theory for the Biot system
together with extensions to include the possibility of viscous terms arising from secondary
consolidation and the introduction of appropriate boundary conditions at both closed and
drained interfaces were given in [24]. These results were extended to the Barenblatt–Biot

double–diffusion deformation model in [25].
In all of the preceding works, it was assumed that the medium is fully–saturated. By

partially–saturated we mean here that the fluid saturation level is given by a continuous
monotone function of pressure which increases from near zero to unity in the vicinity of
the (negative) capillary tension or air-entry pressure value, p0. The air is assumed to
remain at a constant atmospheric pressure, so this model does not account for the effects
of increments in air pressure, such as occur in regions of fluid-entrapped air.
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The permeability is likewise pressure dependent, and these relationships are available
from experiment. See [7], especially Section 9.4, for background information on partially–
saturated, i.e., unsaturated flow. A mathematical theory was developed in the funda-
mental work of [5] and [27] for a special limiting case in which the saturation is given by
the Heaviside step function of pressure. The usual situation with a continuous saturation
was developed by [15], [29], [17], [1] and [2]. The boundary of of the region Ω is given by
the disjoint union of the parts ΓD where pressure is specified and Γfl. The flux boundary
Γfl is further written as the disjoint union of ΓN where flux q is prescribed and ΓU which
is exposed to the air. Here the fluid pressure p cannot exceed the outside null pressure
of air, and there can be no flow into Ω. Also, p = 0 on the seepage surface, which is that
part of ΓU where flux q > 0, and there is no flow from the boundary above that, where
p < 0. These unilateral conditions are characterized by a variational inequality on ΓU .
All of these results are for the case of a rigid homogeneous medium.
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The extension of this theory to cover both elastic deformation and partial–saturation in
a homogeneous medium was given recently in [26]. This was the first mathematical proof
of existence to include both aspects. See [16] for a careful discussion of modeling issues
for partially saturated flow in a deformable medium. Also see [34], [33], [20], and [22] for
additional perspectives in modeling and numerical simulation.

2. THE MODEL

Next we shall describe a system modeling double-diffusion in a partially–saturated elas-
tic porous medium Ω ⊂ R

3. The functions p1(x, t) and p2(x, t) are the two component
pressures at the point x ∈ Ω obtained by averaging the fluid pressure in the respec-
tive components over a small representative neighborhood that contains parts of both
components. These are the basic variables and are described in detail below.

The fluid is assumed to be barotropic, i.e., the density and pressure are related by a state

equation ρ = ρ(p) in which the non-decreasing constitutive function ρ(·) characterizes the
type of fluid. For j = 1, 2, the function ϕj(·) is porosity, Sj(·) is the saturation level, and
kj(·) is the relative permeability for the laminar flow in the j-th component of the medium.
Each of these functions is non-negative and pressure dependent. Let the negative pressure
τj ≤ 0 denote the capillary tension or the air entry pressure in the j-th component; for a
fissured medium consisting of fractures (j = 1) and blocks (j = 2), we have τ2 � τ1 ≤ 0.
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Each saturation function Sj(·) is monotone with Sj(p) = 1 for p ≥ τj, and 0 ≤ Sj(p) < 1
for p ≤ τj. In the context of soil mechanics, the fracture component of the medium is
fully–saturated in the groundwater region, {x ∈ Ω : p1(x, t) > τ1}, while in the capillary

fringe, {x ∈ Ω : p1(x, t) < τ1}, it is only partially–saturated. There is a similar pair of
regions associated with the blocks. The phreatic surfaces {x ∈ Ω : pj(x, t) = τj} are
unknown interfaces that separate each component into these regions.

The (small) displacement of the structure from the position x ∈ Ω is denoted by
u(x, t). The (linearized) strain tensor εkl(u) ≡ 1

2
(∂kul + ∂luk) provides a measure of the

local deformation of the body. The total stress σij is the sum of the effective stress of
the purely elastic isotropic structure given by Hooke’s law, σ ′

ij = λδijεkk + 2µεij , with
positive Lamé constants λ for dilation and µ for shear, and of the effective pressure stress
of the fluid on the structure, hence,

σij = σ′

ij − δij(α1χ1(p1) p1 + α2χ2(p2) p2) .

The constants α1 and α2 measure changes of porosity and fluid content of the respective
components due to a volume dilation ∇ · u = εkk(u) of the structure. The Bishop

parameter χj(·) is the fraction of pore surface of the j-th component in contact with the
fluid. Little is known quantitatively about the Bishop parameter, except that it is well
approximated in many situations by χj(p) ≈ Sj(p). See [16] for further discussion.

The double-diffusion-deformation system consists of the equilibrium equation for mo-
mentum conservation and the two storage equations for fluid mass conservation. If we
neglect gravity, it takes the form

− (λ + µ)∇(∇ · u) − µ∆u + ∇
(

α1χ1(p1) p1 + α2χ2(p2) p2

)

= f0(x, t) ,(1a)

∂

∂t

(

ϕ1(p1)S1(p1)ρ(p1) + α1∇ · u
)

−∇ ·
(

ρ(p1) k1(p1)∇p1

)

+ Γ(p1, p2) = g1(x, t) ,(1b)

∂

∂t

(

ϕ2(p2)S2(p2)ρ(p2) + α2∇ · u
)

−∇ ·
(

ρ(p2) k2(p2)∇p2

)

− Γ(p1, p2) = g2(x, t) ,(1c)

with Darcy’s law for the filtration velocity in the respective components and a related
exchange rate Γ(p1, p2) for pressure-driven fluid transfer between the components. These
are described below.

2.1. The Exchange Term. The two pressures p1(x, t) and p2(x, t) in the respective com-
ponents are obtained by spatially–averaging over the corresponding components within
a representative neighborhood centered at x. In order to describe them together with
the corresponding exchange term in (1), we consider a small neighborhood Ωε(x0) of size
ε > 0 at a fixed point x0 ∈ Ω. In that neighborhood, we see three parts, namely, Ωε

1
and

Ωε
2

which represent the two flow regions and the third part Ωε
3

which is the transition

region which separates these two flow regions. The geometric interface between Ωε
3

and
Ωε

j is denoted by Γε
j3 ≡ ∂Ωε

3
∩ ∂Ωε

j for j = 1, 2, and Γε
33

≡ ∂Ωε
3
∩ ∂Ωε(x0) will denote

the remaining boundary of Ωε
3
. The pressure function p(x, t) is defined and continuous

throughout the neighborhood. In the j-th component of the medium, j = 1, 2, the cor-
responding flow rate in Darcy’s law is determined by the fluid conductivity ρ(p)kj(p).
Denote by Kj(p) ≡

∫ p

0
ρ(s)kj(s) ds the flow potential corresponding to the mass flux

= −∇Kj(p) = −ρ(p)kj(p)∇p within the j-th component. Let K(·) be a flow potential
in Ωε

3
, and assume that K(p) is a continuously differentiable connection to each Kj(p)
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across Γε
j3. These interface conditions correspond to continuity of pressure and fluid mass

flux. The pressure is expected to be nearly constant in each of Ωε
1

and Ωε
2
, and these

values can be essentially different, so the primary variations in pressure will occur within
Ωε

3
. Thus, we shall assume that in the transition region Ωε

3
the spatial gradients are large

of order O(1

ε
). In order to quantify the sizes, we make a change of scale x = εy to get

corresponding regions Ωj for j = 1, 2, 3 of unit size in which we have

a1(p)t =
1

ε2
∆yK1(p) + f1(εy, t), y ∈ Ω1 ,

a2(p)t =
1

ε2
∆yK2(p) + f2(εy, t), y ∈ Ω2 ,

ε2a3(p)t = ∆yK(p) + ε2 f3(εy, t), y ∈ Ω3 ,

with corresponding interface conditions as before. The coefficients have been arranged
to indicate that gradients in Ω1 and Ω2 are small of order O(ε). All the ε dependence
has been moved to the coefficients!

Now we can go to the limit as ε → 0. In the limit, we get ∇yKj(p(y, t)) = 0 in Ωj, so
each Kj(pj(x0, t)) = K(p(y, t)) on the rescaled interface Γj3 for j = 1, 2. In particular,
the function u(y, t) ≡ K(p(y, t)) satisfies the local boundary-value problem

∆yu(y, t) = 0 in Ω3 ,

u(y, t) = Kj(pj(x0, t)) on Γj3 for j = 1, 2,

∂u

∂n
= ∇yu · n = 0 on Γ33 .

We have used n to denote the unit outward normal on ∂Ω3. The last condition means
that we have isolated the cell in order to restrict the response to local contributions to
the flux. Since this problem is linear, we can represent its solution in terms of the cell

problem

∆yU(y) = 0 in Ω3 , U(y) = 1 on Γ13,

U(y) = 0 on Γ23,
∂U

∂n
= 0 on Γ33,

which defines the characteristic flow potential U(·) in Ω3. Note that 1−U(y) is the solu-
tion of the corresponding problem with 1 and 0 interchanged in the boundary conditions
on Γj3. Since Kj(pj) is independent of y, we can use the cell problem to represent the
solution of the local boundary-value problem as

u(y, t) = K1(p1(x0, t))U(y) + K2(p2(x0, t))(1 − U(y)) .

Finally, we compute the flux qj3 across Γj3 into Ω3 for j = 1, 2, by

q13 =

∫

Γ13

∂u

∂n
ds = −q23 =

∫

Γ13

∂U

∂n
ds

(

K1(p1(x0, t)) − K2(p2(x0, t))
)

These give the exchange term in the form

(1d) Γ(p1, p2)(x0, t) = κ(x0)
(

K1(p1(x0, t)) − K2(p2(x0, t))
)

,
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and this completes the Barenblatt-Biot system (1). Note that all the effects of the micro-
structure geometry are contained in the characteristic flow potential U(·). Moreover, by
the maximum principle, ∂U/∂n > 0 on Γ13, and hence,

κ(x0) ≡

∫

Γ13

∂U

∂n
ds > 0.

Note, finally, that in the special case k1(·) = k2(·) of a single component, the exchange
term takes the form

Γ(p1, p2) = κ(x0)

∫ p2

p1

ρk ds = κ(x0)ρ̃k(p2 − p1)

in which ρ̃k is the average fluid conductivity over the indicated pressure interval.

2.2. The Boundary Conditions. The boundary of Ω is given by the disjoint union
of the parts ΓD and Γfl. The boundary of Ω is also written as another disjoint union
of the parts Γ0 and Γtr. Finally, we define a pair of functions, βj(·), j = 1, 2, on that
portion of the boundary, ΓS = Γfl ∩Γtr, which is neither drained nor clamped, and these
functions specify the surface fraction of the pores in the j-th component which are sealed

along ΓS. For these pores, the pressure pj(·) continues to contribute to the total stress
within the matrix. The remaining portion 1 − βj(·) of the pores are exposed along ΓS,
and these contribute to the flux but not to the stress. Thus, on any portion of ΓS which
is completely exposed, that is, where βj = 0, the fluid pressure does not contribute to
the support of the matrix, so only the effective or elastic component of stress is specified
for that component. Similarly, on any portion which is completely sealed, that is, where
βj = 1, the total stress contains the full available pressure αjχj(pj)pj, and there is no
production of boundary flux from that component resulting from dilation. The classical
models have considered only this latter case, even in the simplest homogeneous and linear
models.

We can now state the boundary conditions for our problem. On the Dirichlet boundary
ΓD, the value of the two pressures is given by the depth below the surface:

(2a) pj(x, t) = d(x), x ∈ ΓD, j = 1, 2,

where d(·) > 0. Along Γfl the boundary flux is given by

qj ≡ −
∂

∂t
[(1 − βj)αju · n] − ρ(pj)kj(pj)∇pj · n ,

for j = 1, 2, where n is the unit outward normal on the boundary, ∂Ω. On the Neumann
boundary ΓN , there is no flow, so we have a null normal flux from each component:

(2b) qj(x, t) = 0, x ∈ ΓN , j = 1, 2.

On the unilateral boundary ΓU , we have

(2c) pj ≤ 0, qj ≥ 0, pj qj = 0, x ∈ ΓU , j = 1, 2.

The remaining boundary conditions on ∂Ω involve the displacements and tractions,
namely,

(2d) u = 0 on Γ0 , σ(x, t)n = f on Γtr ,
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where the traction forces are given by

σij(x, t)nj ≡
3

∑

j=1

σ′

ijnj − (β1α1χ1(p1)p1 + β2α2χ2(p2)p2)ni .

2.3. The Initial Conditions. Finally, we shall require that the initial value of the fluid
content θj(·) be specified in each component,

(3) ϕj(pj(x, 0))Sj(pj(x, 0))ρ(pj(x, 0)) + αj∇ · u(x, 0) = θj(x) , x ∈ Ω , j = 1, 2,

where the initial displacement and pressure satisfy an initialization constraint.

2.4. The Semi-Linear Case. Assume that there are constants λj > 0 for which

(4) λj(p χj(p))′ = ρ(p) kj(p) , p ∈ R .

These relate the Bishop parameters χj(·) to the fluid conductivity ρ(·) kj(·). Since this
product is positive, it follows that p χj(p) is monotone. Furthermore, when ρ(·) kj(·)
is monotone, it follows that p χj(p) is convex, so χj(·) is monotone. Note that our
assumption (4) requires that the pressure stress is given by

λj∇(p χj(p)) = ρ(p) kj(p)∇p ,

i.e., the pressure component of the Darcy velocity. This relates the flux to the viscous

resistance of the medium to the fluid flow. Moreover, it permits the Bishop parameter
to have essentially the same form as the saturation function, and this seems to be all the
information we have about the Bishop parameter.

This assumption (4) permits a change of variable in which the system is essentially
a semilinear system. For this system we have proved existence of a weak solution, and
it includes gravity in addition to the six remaining additional sources of nonlinearity.
The proof follows the same technique as that of [26], namely, we phrase the problem
as an abstract Cauchy problem for an implicit evolution equation for which we use use
monotonicity and compactness methods [14, 23]. We are extending this result to include
the degenerate case of [30] in which there is no diffusion between isolated blocks, so
K2(·) = 0, as well as the pseudo-parabolic fissured medium equation in which also there
is negligible storage in the fissures, hence, ϕ1(·) = 0.
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