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Abstract. We study the Cauchy problem for systems of the form

d
ZAW®) +Bu(t) 3 /(1) ,

where A is a subgradient and B is maximal monotone on a product of three Hilbert spaces.
The operator A is compact in the first component and linear in the third. The second
component is treated as an ordinary differential equation. The results here on existence
and uniqueness extend those of DiBenedetto and Showalter to systems of equations in
which A is not necessarily compact in all its components. The technique used to prove
existence is also used to prove continuous dependence of solutions on the subgradient A. A
large class of models for flow in partially fissured porous media are of the type considered
here, and they provide the motivation for our study.

Keywords: doubly nonlinear, secondary flux, partially fissured, Nunzioto’s equation, de-
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1. Introduction.

We present in Section 2 a model for flow in fractured or fissured media which contains
many classical and contemporary models. This model is the motivation for the hypotheses
made in the theorems proven in Sections 3, 4, and 5. We have made an effort to make
the discussion of the physical models independent of the discussion of the abstract results.

Readers interested only in the theory of abstract evolution equations may skip Sections 2
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and 6, while those who are interested only in the consequences of the results to the model
problems may skip Sections 3—5. We feel, however, that the elegance of the abstract results
enhances the insight into the model, and the model lends justification and independent
interest to the formulation of the abstract results.

We study the initial-value problem

(1.1) %A(U(t)) + B(u(t)) > f(t)

A(u(0)) 3 v
where A is the subgradient of a convex, lower semicontinuous function ¢ : V — R! and B
is maximal monotone from the Hilbert space V to its dual V*. The data f € L?(0,T;V*)
and vy € V* are given. Many models currently used for flow in fractured porous media
yield relations of the type (1.1). This problem is well understood when A is compact; we
shall briefly review the results of [10] in Section 3. The approach used in [10] to solve
(1.1) is to pick € > 0 and solve

(ACe(8) + R e (6) + Blue(t)) 3 £(2)
A(ue(0)) + €R(ue(0)) 3 vg + €R(uop)

(1.2)

where R : V — V* is the Riesz mapping and [ug, vo] € A. If a priori bounds independent
of € exist in V for the solutions u., then one expects that u. converges to a solution
of (1.1) in some sense. Our objective here is to relax the compactness assumption and
thereby extend these results to a larger class of problems arising in the study of fluid flow
in fractured media. Two alternative assumptions on the structure of the problem which
have been utilized are that A is linear and that the composition of B and A~ is Lipschitz
(cf. [19], [5])- Each of these three assumptions will play a role below.

We study these problems in Section 4 for systems with the additional structure ¥V =
Vo X Hy x Hs (all Hilbert spaces), and bounded A = Ay x A; x Ay, where the first
component Ag : Vo — V* is compact and the third component As : Hy — V* is linear.
We also require that the projection of the mapping uy — B(ug,u1,us) : Hi — V* =
Vi x HY x Hy into H is uniformly Lipschitz continuous for (ug, u2) in a bounded subset
of Vy x Hy. In this way, each of the three hypotheses mentioned above plays a role in the

systeim.



Once existence of solutions to (1.2) is established, we give sufficient conditions for
existence of solutions to (1.1). The estimates are wholly analogous to those of [10]. In
Section 5 we consider the dependence of the solutions on the subgradient A. Sufficient
conditions for continuous dependence of the solutions are given, even if A degenerates
to, say, the zero operator. In the final Section 6, we discuss the continuous dependence
of the solutions obtained from each model on the operator A in terms of the physical

assumptions used to derive the model.

2. Models.

A fissured medium consists of a matrix of porous and permeable blocks of pores or
cells which are partially isolated from each other by a highly developed system of fissures
through which the bulk of the fluid transport occurs. Due to this tendency for the cells to
be separated by the fissure system, there is a comparatively smaller amount of transport
directly from cell to cell. Another feature of fissured media is that the volume occupied by
the fissures is frequently considerably smaller than that occupied by the matrix of cells.
Thus, most transport occurs in the fissures and substantial storage takes place in the
cells. The system is by nature very much unsymmetric in the structure and function of
its components. Specifically, the fissure system provides the primary or global transport
component and any interaction with the matrix of cells is regarded as contributing a
localized perturbation. Thus, any transport between cells or storage in fissures can be
regarded as “secondary” effects, and the study of these phenomena is our objective.

The double porosity model is a classical description of diffusion in heterogeneous me-
dia. The idea is to introduce at each point in space a density, pressure or concentration
for each component, each being obtained by averaging in the respective medium over a
generic neighborhood sufficiently large to contain a representative sample of each com-
ponent. The rate of exchange between the components must be expressed in terms of
these quantities, and the resulting expressions become distributed source and sink terms
for the diffusion equations in the individual components. Thus, one obtains a system of
diffusion-type equations, one for each component. We shall construct and compare models
of this type as they apply to our situation.

The classical double porosity model of [2] for the flow of fluid in a general heteroge-



neous medium consisting of two components is

(2.1.a) %aouo + Bouo + é(uo —u1) =[,
(2.1.b) 4 arur + Biug + l(Ul —ug) =0,
dt «
where B; = —V - B;V for some positive semidefinite matrices B;, ¢+ = 0,1. The top

line quantifies the rate of flow in fissures — regions of small relative volume but large
permeability. The second line quantifies the rate of flow in the cell system — regions of
large porosity or volume, but largely isolated from one another. Both of these equations
are to be understood macroscopically; that is, these quantifications are to be idealized by
averaging over neighborhoods containing a large number of cells (called “blocks” of pores)
and fissures. These ideas are described in detail in [2]. Although the components of (2.1)
are structured symmetrically, fissured media characteristics are modeled by very small
coefficients ag and B;. In the extreme model, ag = 0 because the relative volume of the
fissures is zero, and B; = 0 (the zero matrix) because there is no direct flow from one block
of pores to another; only indirect flow through the fissures occurs. Thus, the condition
Bi = 0 corresponds to a completely fissured medium in which each cell is isolated from
adjacent cells by the fissure system. The last term on the left of each equation represents
the exchange of fluid between the cells and the fissures. The parameter o represents the
resistance of the medium to this exchange. When o = oo, no exchange flow is possible.
An alternative interpretation is that 1/« represents the degree of fissuring in the medium.
When the degree of fissuring is infinite, the exchange flow encounters no resistance and
ug = u1. The external sources of fluid represented by f are located in the fissures in this
model, although there is no technical difficulty in assuming that fluid may be injected or
extracted in the cells as well.

Our objective is to modify this model to allow flow between the cells, resulting in a
secondary fluxr from this bridging between cells. This is the sense in which the medium
is partially fissured. The model given here does not have the inappropriate symmetry of
(2.1); it arises in a natural way from both mathematical and physical considerations, and

we discuss both. First, we consider the formal operators

d d
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Then (2.1.b) implies that
= (I—I—on)_1 Uug .

Substituting into (2.1.a) gives
1 1
(2.2) Pug + - (I — (I +aQ) ) ug = Pug + Qauo = [,

where

0u=—(1-(1+0Q)") =0+ 00

is the Yosida approximation of the maximal monotone operator Q (cf. [7]). Since 1/a is a
measure of the fissuring of the medium, Qy = Q corresponds to a homogeneous medium
in which flow is modeled by the classical diffusion equation.

Let us consider first the completely fissured case By = 0, in which no direct flow
between cells takes place. Then

d d \ !
Qa—a]_% (I‘I‘aala ) y

and (2.2) becomes

(2.3) aiu + Bou —l—i I—I—aai _1u =f
. 07 %o+ Boto + 1o o=17,

the kinetic or first-order rate model (cf. [14], [22], [13]). If, in addition, the fissure volume
is zero, then ag = 0 and the classical fissured-medium equation [4] is recovered. [See (2.8).]

Let us investigate the operators in (2.3) more closely. The first property we consider
is the separation of the temporal and spatial operators. The temporal operator is an
ordinary differential operator and is studied using ordinary differential equation techniques
(cf. [4] and [18] for examples), while the spatial operator is an elliptic differential operator.
Note that the operators are not separated in (2.2) as they are in (2.3). It is natural to ask
whether some corresponding (approximate) separation into temporal and spatial operators
exists for (2.2).

To achieve the separation of temporal and spatial operators, we consider the approx-
imation

(I—i—a% >_1 uo(t) =~ up(t — @) ;



i.e., the resolvent of d/dt is approximately a translation. This observation suggests that we
may think of the cells as providing a delayed storage or capacitance. The parameter « in
the Yosida approximation of @ now plays the role of a response time. These observations
lead us to models of the form

Puo + % ( delayed storage ) + V( delayed flux ) = f .

We wish to model the delayed storage and flux terms so that when B; = 0, the kinetic
model is recovered, and so that the model can be derived from physical considerations.
In order to quantify these considerations, we first ask what approximation to Q, of

the type indicated above is good for “small B;”. Let us formally expand

d 1 d -t
(Cbla +Bl)a = o (I— <I+OA (a1a +Bl)> )

in powers of B;. The formal power series of the right side suggests that

d d d\ "’ )
(24) U,l% + Bl = ala + 1 -+ aala Bl + O(Bl) .

If By is the L? realization of a linear maximal monotone operator and the correct in-
terpretation is given to the terms on the right, then this formal expansion is actually

correct.

PROPOSITION 1. Let —C' be the linear generator of a Cqy contraction semigroup S(t) on
a Banach space X. Suppose ug € D(C?) and f € C(0,T; D(C?)). Define the functions

U1, Uz, uz and v by

I+ aa— +aC’> ur=f, u1(0)=wug,




Then . .
Ha(f—ul) - a(f—uz) —us

L (0,T;X)

1t \ _na
Sa{§ (@) ot/ H02U0HX+HC2fHL2(0,T;X)} .

Proor. It is a simple matter to verify the following representations:

I —
uy(t) = e~t/2@8 (E) uy+ — [ e"(t=3)/aag (t - S) f(s)ds

a ac Jq

1 t
ug(t) = e79%y + — [ e~ (/e f(5) ds
ac Jo

1 st
v(t) = e /" Cuy + — [ e~/ Cf(s)ds
acx J

t s
us(t) = L/ e~ (t=s)/ac {e_s/“aCuo + i/ e~ (5=n/aac £ () dr} ds
0 ax Jo

ac

t —t/ac 1 /t —(t—r)/ac
= —e Cup+ — t—r)e Cf(r)dr.
ao 0 (aa)g 0 ( ) f( )
Armed with these representations, it is a simple matter to compute

Qaf:f;U1; (a% ) f:f;U27

and

Qunf — (ai ) f—us = —le_t/“a [S (£> —I+ EC’] Up
at /., o a a

t —_— p—
—_ L e—(t—S)/aa |:S <t S) —I+ t SC:| f(S) dS .
0

aa? a a
t —
[S(E)—I—i-f(?]x:/ ! =8 (2) s
a a 0o @ a
2
|l (2)-r+2e]-
a a X

t 2
<5z 0% x -
The proof is concluded by using this estimate in the representation above:

Since

for all z € D(C?),

d £\’ -t/
(0= e ).r=) ] =5 () el el

X ac



REMARKS:

1) The complicated expressions above are merely the rigorous expressions for the formal
computation (2.4). The only technical detail is the assignment of the values of v(0)
and u3(0), which are chosen to make the approximation correct when ¢ = 0. Other
theorems of the same flavor may be proven under various hypotheses on f and on
S(t).

2) If we interpret (I + ad/dt)~! as a delay by a, then Q, decomposes approximately
into

d
O, ~ al% (delay by aja) + Bi(delay by 2a1c) .

The flux is delayed twice as long as the capacitance. Further remarks on this inter-

pretation follow the discussion below.

We consider now a physical derivation for our model for flow in a partially fissured
medium, motivated in part by the decomposition above. The double porosity models
above are based on the assumption that the exchange flow between the components has
a spatially distributed density proportional to the pressure differences. That is, the fluid
stored in the cell system at a point in space is determined solely by the history of the
values of the pressures of the components at that point. In order to induce a flow within
the cell matrix as a response to local coupling, however, it is necessary to apply a pressure
gradient from the fissure system. Thus, we shall model the flux exchange as a response to
both the value and gradient of the pressure. Equivalently, we assume that the local cell
structure at a point is responsive to the best linear approximation of the pressure in a
neighborhood of that point. Furthermore, if the geometry of the cell matrix is symmetric
with respect to the coordinate system, then the response of the cell to the value and to
the gradient of the pressure is additive, the terms representing even and odd responses,
respectively, to even and odd input. Thus, we are led to model the resulting storage and
transport responses within the cell matrix as two independent processes whose effects are
additive.

Let ug denote the pressure in the fissures. Then the conservation of fluid in the

fissures requires that

d .
(2.5.a) %(aouo) —V:-BoVug+qg=f



where ag is relative porosity, By is the permeability matrix for the fissure system, f is the
distributed source density, and q is the distributed mass flow rate into the surrounding cell
matrix. This exchange flow will be computed below. The primary effect of this exchange
is the storage of fluid in the cells, and we model this response as

d 1
(25b) a(alul) -+ a(ul — Uo) =0

where u; is the pressure in the cells. This is just (2.1.b) with By = 0.

In order to appropriately model the flux in the cell matrix, we recall that the cells
are substantially isolated from each other by the highly developed fissure system. Thus,
there will be a limited global cell-to-cell secondary flow and it is driven not by the pressure
gradient in the cells but by the history of the pressure gradient Vg in the surrounding
fissure system. Fluid from the fissure system enters the cell matrix at a point of higher
pressure, it flows through the matrix to a cell at a nearby point of lower fissure pressure,
and there it exits the cell back into the fissure system. This results in a secondary flux s
which we assume follows the fissure pressure gradient according to

d

1 - -
(25C) a(az’ljg) + B(’JQ + BzVUO) =0.

Thus, the rate of change of this secondary flux is proportional to its difference with
—Bgﬁuo, and is thereby determined by the fissure pressure gradient. The matrix By
arises from “bridging” between the nearly isolated cells, and this distinguishes “partially”
from “fully” fissured media. The resistance § may be independent of «, but we suggest
the following heuristic model: since the behavior of s is connected to the fissure pressure
gradient, it is reasonable to set 8 = 2«a. This assignment represents a resistance « to
flow from the fissure to the cell, and additional resistance a to flow from the cell back
to the fissure. In the interpretation of delays, the delay of information exchange between
the change in fissure pressure and the flux is the sum of the delays of the fissure to cell
interaction and the cell to fissure interaction. If these latter quantities are equal, then
B = 2a. In light of the approximation scheme (2.4), these interpretations are no surprise.
There is, however, no need to assume a particular relation between o and g in what

follows. We note that (2.5.c) follows from (2.1.b) if By = 0, @y = —Bzﬁul, a1 = a9 and
a=f.



Conservation of fluid in the fissures and the pores requires that the flux ¢ equal
the exchange rate between the fissures and pores,—d(aju1)/dt, plus the rate due to the
“secondary flux” @y. Using (2.5.b) for the exchange rate and Fick’s law for the secondary

flux rate, we write
]_ = T -
(2.5.d) q= a(uo —uy) + V- B; is.

Notice that the cell flux as seen from the fissures is B i;. This model arises naturally
when as = 0, for then iy = —Bzﬁuo and this flux becomes —Bngﬁuo. Since Fick’s
law can be written in this form whenever the diffusivity matrix is positive semidefinite
and symmetric, (2.5) reduces to the usual diffusion equation for a binary system when
as = 0. In the general case we can eliminate u; and iy from the system (2.5) to obtain

the functional differential equation

i(au)—§ BoVu —l—ia I-I—aia _1u
26) PR oV + a1 T 0

. d \7' .
—V-B?(I—i—ﬁaaz) ByVuy = f .

The resolvent operators above can be expressed as convolutions, and then (2.6) is rec-
ognized as a special case of Nunzioto’s equation [16]. See [17] for the mathematical and
numerical analysis of this approach with microstructure in the completely-fissured case,
By = 0.

It is interesting to note the special limiting cases of the system (2.5) that result by

letting certain coefficients vanish. For example, if 5 — 0 we obtain formally the system

d - - 1

(27&) %(a()?l,()) -V- (BO + Bng)VUO + E(UO - Ul) = f
d 1

(27b) a(alul) + a(ul — U()) =0

which is the first-order rate model (2.3). (The same form also results by letting By — 0.)

Further, letting ag — 0 in (2.7) leads to the fissured medium equation

d > = > = d
(28) %al (UO —aV - (B() + B;PB2)VUO) -V- (B() + B;BQ)VUO = (I + a(h) f .



On the other hand, if we let ap — 0 directly in (2.5) (or (2.6)) we obtain formally the

Sobolev-type equation [8]

d d = = d d
— (I+ Of—(ll) (I+ ﬂaag) V- B()V’U,() + —ax (I+ ,8£0,2> Up

dt dt
(2.9) p p p
- (I-{—a%al) V- BgB2Vu0 = (I-I— a%al) <I+ﬁ%0@) f.

This in turn becomes a fissured medium equation if either 5 — 0, By — 0, or if aa; = Bas.
The continuous dependence of the solutions of (2.5) on coefficients will be the subject of

Section 5.

3. Definitions, notation, and review of previous results.

We recall some well-known facts on maximal monotone operators and some existence
results on doubly-nonlinear evolution equations that are immediate consequences of [10].
We shall also develop the semi-linear case by the method of [19]. Let V be a Hilbert space
with inner product (-,-). If V* denotes the dual of V, the Riesz representation theorem
guarantees the existence of a map R : V — V*, called the Riesz isomorphism, which
satisfies

(u,v) = (Ru,v) Vu,veV,

where (-,-) is the duality pairing between V* and V. A subset B C V x V*, is called
monotone if

(vg —v1,u2 —u1) >0

whenever [u;,v;] € B, i = 1,2. In this case, B is thought of as a (possibly) multivalued
operator from V to V*. To say v € B(u) means [u,v] € B. B is mazimal monotone if,
in addition to being monotone, B has no monotone proper extension in V' x V*. This is
equivalent to the condition that (R + AB)~! = Jj, the resolvent of B, is a contraction
defined on all of V* for any A > 0. The Yosida approzimation of Bis By = R(I—JxoR)/A\;
it is Lipschitz continuous and monotone : V — V*. If u € V, By(u) € B(Jx(u)). If B
is maximal monotone, [uy,v,| € B, u, — u (i.e., u, converges weakly to u), v, — v,
and liminf (u,,v,) < (u,v), then [u,v] € B. If also limsup (uy,v,) < 0, then we have

the additional information lim (u,,v,) = (u,v). A maximal monotone operator B on V



induces a maximal monotone operator (still denoted by B) on L%(0,T;V) by v € B(u)
iff v(t) € B(u(t)) a.e. on [0,T]. It is often convenient to interpret maximal monotone
operators as maps from V to 2V via the Riesz isomorphism R~ : V* — V. We shall use
these two notions interchangeably.

A special class of maximal monotone operators is the class of subgradients. If ¢ :
YV — (—00,0] is a lower semicontinuous, proper, convex function, then the subgradient

Jp CV x V* is defined by
Op(u) ={veV:pu) —eu) > {v,a—u)y VieV}.

In this case, d¢ is maximal monotone. The conjugate of ¢ is the convex function ¢* :

V* 5 R! defined by

©*(v) = sup ((v,u) — @(u)) .
ueV

This function is chosen so that dp~! = dp*; thus v € dp(u) iff u € dp*(v) iff p(u) +
©*(v) = (u,v). We assume throughout that ¢(0) < 0 so that ¢*(v) > 0 for all v € V*. If
v € HY(0,T;V*) and [u, v] belongs to the L2(0,T; V) realization of d¢, then

407 00) = (0,00 e on 0.7].

We now recall the existence results from [10]. Let A : V — V* be the subgradient
of a proper, convex, and lower semicontinuous function ¢ : ¥V — IR', and suppose A is
bounded. Let B :)V — V* be maximal monotone and bounded. Let R denote the Riesz
map : V — V*. Fix f € L?(0,T;V*) and [ug, vo] € A. Then for each A > 0, there is a pair
uyx € H(0,T;V), vy € H(0,T; V*) such that

((wa(t) € A(u(t)) for all t € [0,T] ,

(31) 3 & (Rua(t) +a(0) + Ba(ua0)) = 5 0),

| Rux(0) +vx(0) = Rug + v -

These functions satisfy the a prior: estimates

||U>\||Loo(o,T;v) ’ ||U>\||Loo(o,T;v*) , ||J>\(RU>\)||LO<>(0,T;V),

||B>\(UA)||L00(0,T;V*) , ||Ui\||L2(o,T;v) , ||RU£\||L2(0,T;V*)



are bounded independent of A > 0. Choose a subsequence (still denoted by subscript A)

for which
uy — u, vy — o’ in L2(0,T;V) ,

vy = v, vy =o' in L*(0,T;V*) , and
Bx(uy) = win L*(0,T; V*) .

Note that, since {v)} and {uy} are uniformly equicontinuous functions, if follows that
(3.2) ux(t) = u(t) and vy (t) — v(t) for all t € [0,T] .
The differential equation

d

pr (Ru(t) + v(t)) + w(t) = f(t) a.e. on [0,T]

follows from the convergence hypotheses. The difficulty lies in checking that v € A(u)
and w € B(u) a.e. on [0,T]. The first result halves the work needed to verify these two

conditions.

THEOREM 1. If it can be shown that v(t) € A(u(t)) a.e. on [0,T], then the triple [u,v,w]

satisfies
(uwe HY(0,T;V) , ve HY0,T;V*) , we L*(0,T;V*),

veAlu) , we B(u) ae. onl0,T],

(3.3) -
%(’Ru(t) +o(t)) +w(t) = f(t) a.e. on[0,T], and

{ R(u(0)) + v(0) = R(ug) + vo -

We remark that in [10], the condition v € Au a.e. follows from a compactness assump-
tion on the operator A. For the systems which follow, this assumption is inappropriate
for at least some of the components of A. We shall overcome this difficulty by requiring

further structure on these components.



The second existence result of [10] concerns the (possibly) degenerate Cauchy problem
(uwe L?(0,T;V) , ve HY(0,T;V*) , we L*(0,T; V"),

veAlu) , we B(u) a.e. on [0,T],

(3.4) S d
%v(t) +w(t) = f(t) a.e. on [0,T], and
( v(0) = vo.

The additional hypotheses for Theorem 2 are that the realizations A : L?(0,T;V) —
L%(0,T;V*) and B : L%(0,T;V) — L2(0,T; V*) are bounded, and that the solutions to

vx € A(uyx), wx € B(uy) a.e. on [0,T],

(3.5) %(ARuk(t) +ua(®) +wa(t) = £(t) a.e. on [0,T], and

AR (ux(0)) + vA(0) = AR (uo) + vo -

satisty |[uallp2(o 1,y < M for some M independent of A. Then additional a priori bounds
are derived, from which it follows that some subsequence (still denoted by subscript A)

satisfies
uy — u in L2(0,T;V)

vy — v and v — v’ in L*(0,T;V*)
wy — w in L?(0,T;V*)
Again, the difficulty lies in the verification that v € A(u) and w € B(u), and once again,

the gist of the theorem is that only one of these conditions need be verified.

THEOREM 2. If it can be shown that v € A(u) a.e., then the triple [u,v,w] is a solution

to (3.4).

The proof that v € A(u) a.e. follows in [10] from a compactness argument on A; we
have already discussed the modifications we shall make to this hypothesis.

In [10], the a priori bound on ||ux|| 12 (g 7,y is obtained by requiring B to be L?(0,T;V)-
coercive. This hypothesis is not valid for at least some models in which we are interested.

If, in these cases, we require that A be linear, a rather complete theory is available.



THEOREM 3. LetV be a topological vector space with dual V*. Let A:V — V* be linear,
symmetric, monotone and continuous, and denote by V, the semi-norm-space obtained
from the semi-scalar-product Au(v) on V. (Thus V; is a Hilbert space.) Let B C V x V*
be a monotone relation and assume Rg(A + B) D Vi. Then for each vy € Rg(B) NV;
and absolutely continuous f : [0,T] — V¥ there exist functions u,w : [0,T] =V for which

Au : [0,T] — Vi is absolutely continuous, Au(0) = vg, and
(3.6.2) %Au(t) Fw) = f(t), e te[0,T],
(3.6.b) we L>®0,T;VY) , wt)eBul), tel0,T].

The functions Au(-) and w are uniquely determined. If A+ B is strictly monotone, then

U 1S unique.

PrOOF. Denote the kernel of A by K and form the quotient space V/K and its comple-
tion W. Thus W is a Hilbert space with scalar product given by

(@, 0)w = Au(v) ,  a=gq(u), v=4q(v),
where the quotient map ¢ : V, — W is a strict homomorphism with dense range. Thus
the dual ¢* : W* — V¥ is an isomorphism, and the Riesz isomorphism Ag: W — W* is
determined by A = ¢*Apq. Define D = {u € V : B(u) N V¥ # (0} and restrict B to V.
That is, we replace B by BN (D x V*). Then define By : g[D] — V¥ by By = (¢*)"1-B-¢~ L.
Finally, we define C : ¢[D] — W by C = Ag"' - B. Tt follows that

Bu(v) = AoCq(u) (q(v)) = (Ca, O)w u,v € D,

so B is monotone implies C is monotone in the Hilbert space W. Also ¢*Ag is an isomor-
phism and

A+ B=q"Ao(I +C)q
so Rg(A+ B) = V¥ implies Rg(I + C) = W. Thus C is maximal monotone in W. Finally

note that (3.6) is equivalent to the evolution equation

%ﬂ(t) +C(at)) = (¢*Ao)" " f(t) , ae. te(0,T)

for u(t) = q(u(t)) in W, so the desired results follow from [7]. [ |

The semigroup theory gives the continuous dependence on B:



COROLLARY. Let A, V,V, be given as above. For each n =0,1,2,..., let B,, be mono-
tone, Rg(A+ Bp,) D V*, v, € Rg(B,) NV*, and f, € L*(0,T;V*) and let u, and ugy be
solutions of

d

E(Aun) + B’n(un) > fn 3 Aun(o) =Up -
If v, = vo in V¥, fu — fo in LY(0,T;V*) and if for every g € V¥ and solutions w, of

(A + Bp)wy, > g we have wy, — wg in V,, where (A + Bo)wo 3 g, then Au, — Aug in
C0,T;Vy).

See [8] for a review of results on various classes of equations of the form (3.6) and
an extensive collection of examples of initial-boundary-value problems which are thereby

obtained. For related recent results see [11], [12], [20], [1], [3]-

4. Systems.

We shall apply Theorems 1 and 2 in the following setting for which the additional
structure is motivated by the model problems given in Section 2. Let V, H;, and H3 be
Hilbert spaces, and denote by V the (Hilbert space) product V' x Hy x Hj. Identify H;
and Hy with their respective dual spaces, so the Riesz mappings are the identity mappings
on these two spaces. We suppose that there is a (pivot) Hilbert space Hy with V' dense
and compactly embedded in Hy. Let i : V — Hy be the embedding. Let ¢ : Hi, — R,

k =0,1,2 be convex, lower semicontinuous, proper functions. Define ¢ : ¥V — R! by

@(u) = @o(iuo) + @1(u1) + @2 (u2) , u = [ug,u1,uz] €V .

Then ¢ is convex, lower semicontinuous and proper. Let A = Jp. Clearly this subgradient

is computed componentwise as

Au(v) = 0o (iug) (ivg) + 0p1(u1)(v1) + Opa(usz)(ve) ,
u = [ug,ur,us] , v =[vg,v1,v2] EV .

Let B:V — V* be given, and denote the components of Bu by

Bu = [Bou, Byu, Bou] € 27 x HF x 282 | w = [ug,uy,us] € V.

In order to apply Theorem 1, we make the following assumptions:



[A1] ¢o is continuous at some point of V and dpgoi: V — Hj is bounded; dp; = A; :
H,; — H7 is bounded; and 0¢s = Ay : Hy — Hj is bounded and linear.

[B1] B : V — V* is maximal monotone and bounded; B; is Lipschitz continuous, and if
uxo — up in V and uxs — wg in Ha, then Bj(uxg, -, ur2) converges uniformly on

bounded subsets of H to By (ug, -, us2).
THEOREM 1’.  Under hypotheses [A1] and [B4], there exists a solution (u,v,w) of (3.3).

PROOF. Suppose [uy, vy] are solutions to (3.1), and that uy — win V and vy — v in V*.
Our goal is to show that v € dp(u). We consider each of the components separately.

The last component is easiest to understand. Since A5 is a bounded linear operator,
it is continuous from the weak topology on Hy to the weak topology on H3. Since (vy), =
Aa(uy,) for each X > 0, it follows that vy = As(ug).

The first component is handled as in [10]. We know that {vxg} = {0p0 0 i(uxrg)} is
bounded in L2(0,T; H), and that {dvyo/dt} is bounded in L2(0,T;V*). We conclude
from Aubin’s Theorem (cf. p.58 of [15]) that {vyg} is relatively compact in the strong
topology in L2(0,T;V*). It then follows (using the uniform equicontinuity of {vyo}) that
vao(t) = vo(t) in V* for all ¢t € [0, T]; thus vy (t) € Ao(uo(t)) for all ¢t € [0,T].

The second component is handled using ordinary differential equation techniques. Let
Zx = U1 + a1, 50 uxy = (I + A1) 7 2y
Then

) Coat Baaant) = Fi0)

zx(0) = uo1 + vo1 ,
where F)(z,t) = Ba1(uxo(t), (I +.41) " 2, uxq(t)). Integrating (4.1) for parameters A and
i yields

0=2x(t) — 2z,(t) +/0 Fx(2x(s),s) — Fu(2zu(s), s) ds .

We use the triangle inequality to get

120 = 200, < ([ 15 (a(51.5) = B au),9)

+ | Fa(z(s),5) - FM(ZM(S),S)HHJ ds .



Since B is Lipschitz continuous and By (x) € BJy(z) where Jx(z) = (I + AB)™!

15 (2x (), ) = Fa (2 () )| r, =
[[B1(Ix(uno(8), (I + A1)~ 2n(t), ura(?)))
—Bl (J)\(u,\o(t), (I+ Al)_lzu(t),’lt)\z(t)))HHI

< M ||za(t) — Zu(t)”Hl )

where M is a Lipschitz constant for B;. Here we have used the facts that Jy and (I+.4;)7!

are contractions.

We now apply Gronwall’s inequality to estimate

loa(®) = 20 ()1 . g/o M=) | 7 (2,(5), 8) — Fy (2(5), ) | . ds

Since {z,} is bounded in L*(0,T;H,), it suffices to show that Fy converges uniformly
on bounded subsets of H;. It will then follow that uy, = (I + A1)71(z)) is strongly
convergent in H, and thus v; € A;(u;1). As in the previous argument, we have
[Pz 8) = Fu(z: 8, <
1B (Ia(uxo(t), (I + A1) 2, uxa(t))) — Bi(uxo(t), (I‘l'v‘ll)_lz’uxz(t))HHl
+ [ Bi(uno(t), (I + A1) " 2, una(t) = Buuug(t), (1 + A1)~ 2, uuy (8)]|
+ [ B (g (1), (1 + A1) ™H 2y g (8) = B (Ju (o (1), (I + A1) 7 2, 1y (1)) ||,
< M M [|By (Ia(wro(®), (I + A) 72, un0(0)
B2 (T 0), (0 A2,y ()],
+ || Bi(uno(®), (I + A1) 2z, una () — Bu(upg(t), (T + A1) 7 2, 1y (1), -

It follows from the hypotheses on B; that {F(-,t)} is uniformly Cauchy on bounded
subsets of Hj. ]

We may apply the above arguments in the situation of Theorem 2 as well, provided
[Ay] A: L%(0,T;V) — L?(0,T;V*) is bounded,

[Bo] B: L2(0,T;V) — L?(0,T; V*) is bounded and coercive.



THEOREM 2'.  Assume [As] and [Bs]| in addition to the above. Then there exists a

solution (u,v,w) of (3.4).

PROOF. The arguments concerning [uyg, Vag] and [uxq, Va2 are unchanged; we need only

modify the ordinary differential equation argument for the second component.

Let [ux, vy, wy] satisfy (3.5), and define
Zx = Auxy + Uxg, S0 uxy = (A + ./41)_1 Z .
Then

d
(4.2) £ZA+FA(Z>\at)=f1(t) ;

Zx(0) = Augy + vo1 ,

where Fy(z,t) = Bxg(uxg(t), (AL + A1) 71z, uxq(t)). Integrating (4.2) for parameters A

and p yields

ax(t) = 2 (t) + / Fy(22(5), 8) — Fo(2u(5),5) ds = (A — pr)ugs

We use the triangle inequality and the fact that F(-,t) is Lipschitz continuous as in the

previous argument to get
t
22 (#) = 26 (Ol g, < X = pll[wozll g, + /O (M 122(5) = 2(8) | i,
+ M [[(M + A1)~ (2u(5), ) — (] + A1) 7 (zu(s), S)HHl) ds .

We now apply Gronwall’s inequality and use the fact that (Al + A1)~ tz,(s) — z,(s) =

—AA12,(5) to estimate

t
l2a(t) = 2u ()|, < ™A = pl uor |, +/0 MeME=D (A + ) [ AL (2 (9)) g, s -

Since {z,} and A; are bounded in L*°(0, T’; H1), we conclude that z) (t) converges strongly

in Hy, uniformly on [0, T]. From the definition of zj,

Ung — VUpqy = (z)\ - zu) - ()\UA2 - ,Uuug) .



We know from the a priori estimates that Auy — 0, so vyg — vz; hence v € Az(us).

Theorem 2 is, therefore, applicable. [ |

The requirement that B be coercive is too restrictive for some applications. In these
cases, an existence theory exists when A is linear (cf. Theorem 3). Examples are given in

Section 6.

5. Continuous dependence on A.

We study now the dependence of the solutions to (3.4) upon the subgradient A = d¢
and the data f and vy. In particular, we are interested in the dependence of the solutions
to the model problems in Section 2 upon the choice of model. The results in this section
are independent of the system structure from Section 4. Let {A,}, {f»}, and {vo,}
be sequences to which correspond (not necessarily unique) solutions [ty vy, wy,] to the
problems

(v, € Ap(uy), wy, € B(uy,) ,

d
.1 — =
(5.1) { g0t wn=fa

L vn (0) = vo,, -

We assume that ¢y — ¢* uniformly on bounded subsets of V*, that vy, — vy for
some vy € V*, and that f, — f in L?(0,T;V*). Assume that for some subsequence (still
denoted by subscript n),

up — win L?(0,T;V) ,

ivn — i’u in L2(0,T;V*) ,
(5.2) dt dt
wy, — w in L*(0,T; V*) ,

and that v € A(u), w € B(u) .

If [u,v,w] is a solution to (3.4), then the weak convergence above is actually strong

convergence in many cases.

PROPOSITION 2. If the hypotheses discussed above hold, then

@k (vp) = @*(v) in L°°(0, T;RY) and

(5.3) T
lim (W (t) — w(t), un(t) — u(t)) dt = 0.

n—0o0 0



The following remarks are in order:

1) The solution [u, v, w] to (3.4) need not be unique.

2) The point of Proposition 2 is that we can deduce strong convergence of u,, or v, in
certain cases. Specific examples follow.

3) It’s possible to have B depend on n, too, but the technical details are more distracting
than enlightening.

4) In practice, the weak convergences of (5.2) are guaranteed from a priori bounds
arising from V-coercivity of B and hypotheses on the convergence of A,,. See the last
example of Section 6.

ProoOF. Compute the L2(0,T;V*) — L?(0,T; V) duality pairing of the equations in (5.1)
and (3.4) with u, — u to get

/O (v, (5) = v'(5), un(s) — u(s)) + (wn(s) — w(s), un(s) — u(s)) ds

_ /O (Fu(5) — £(5), un(s) — u(s)) ds .
Since de} (v, (t))/dt = (v, (1), un(t)),

ot (va(t)) + / (1 (5) — w(s), tn(5) — u(5)) ds = 7, (v0n)
(5.4) 0

t

+/ (0'(s), un(s) = u(s)) + (v (5), uls)) + (fuls) = f(s), un(s) — u(s)) ds .

0

The limit of the right side exists and is equal to

i [oion) + [ 0/(5)une) = (o) + (6o +
(Fa(s) — £(8)1n(s) — u(s)) ds]

= g0+ [ /() ute) ds

= " (u0) + (6" (1)) — " (00)) = " (u(1))

Now consider the limit of the left side:

lim_ @7, (vn () + /O (wn(s) —w(s), un(s) — u(s)) ds

n—0o0

(5.5) .
> linn_l)iolgf oy (v (1)) + lim sup/0 (Wi (8) — w(s), un(s) —u(s)) ds .

n—0o0



We study the first term on the right first. Since v, converges weakly in H(0,T; V*), {v,}
is a bounded subset of L>°(0,7;V*). In particular, {v,(t)} is bounded and ¢* is lower

semicontinuous, so
lim inf o}, (v (1)) = lim inf @7 (0 (1)) — @* (v (1)) + " (v (1))
— lim inf ¢* (v, (1)) > ¢* (0(t)) -
n—o0

These estimates of the limits of the right and left sides of (5.4) imply that
t
0> limsup/ (Wi (8) — w(s),un(s) —u(s)) ds .
n—oco Jo
Since the integrand is nonnegative, the limit of the integral exists and is zero. The

remainder of the proposition now follows from (5.5). [

We now consider three special cases for which Proposition 2 can be used to deduce
strong convergence. The first is the case in which B is strongly-monotone in L2(0,T;V).
In this case, it follows from the proposition that u, — u in L%(0,T; V).

The second case corresponds to the situation ¢*(v) = ||v] i In this case, the weak

convergence of v, to v and the convergence of the norms is sufficient to guarantee that
U, — v in V*.
The final case occurs when the convergence of ¢*(v,,) implies the convergence of u,.

As an example, consider the function

p(u) =3 ||U||i2(9) + llullpr )

with subgradient
0p(u) = u +sgn(u) .

The signum relation sgn(u) is defined to be +1 wherever u > 0, —1 wherever u < 0
and any (measurable) selection from the interval [—1,1] on the set where v = 0. This
functional arises naturally in the study of the Stefan problem; cf. [21]. The dual functional
is

09" (v) = (99) " (v) = (jv| — 1)"sgn(v) ,

and an appropriate antiderivative is

o (v) = /Q L(jo| - 1)*2 .



In the Stefan problem, u represents the temperature, while v € Jp(u) represents the
enthalpy. Note that
p*(v) = % ||“||i2(9) )
so that, roughly, convergence of ¢}, (vy,) is the same as the convergence of ||un[|f2(q). Since
u, — u, we may use the convergence of norms to conclude that u, — u in L2({).
To make the rough ideas above precise in a particular example, suppose the ¢}, are

given by the Yosida approximations

.
e (up 41 if u, >1/n ,
1+1/n(u +1) if up, > 1/n
Uy, € 091/ (Un) = { Un if u,, € [-1/n,1/n],
1 .
\m(—un—l) 1f’u,n<—1/n

The conclusion ¢*(vy,) — ¢*(v) means

(lun| = 1/n)* = llull 2o -

L2(Q)

H 1+1/n
If Q2 is a set of finite measure, then [|un[|f2() = [lull12(q). From the convergence of norms
and the weak convergence, we conclude that u, — u in L?(Q2). That is, the temperatures
in the approximate Stefan problem converge strongly, even though the enthalpies may

only converge weakly.

6. Applications to flow in partially fissured media.

We now apply the abstract results of Sections 4 and 5 to the models described in
Section 2. Our emphasis is on the continuous dependence of solutions upon the choice of
model, although we begin with a discussion of existence of solutions.

Let ©Q be an open, bounded subset of R" with sufficiently smooth boundary (C*!
suffices). Take Hy = H; = L?(Q), Hy = (L?(2))", and V a subspace of H'(2) chosen to
reflect the boundary conditions to be imposed on ug. For example, H} = V is appropriate
for Dirichlet boundary values.

After substituting (2.5.d) into (2.5.a), we see that the formal operators B; are

1

B()(’LL(), Ui, ﬁg) = —(U() — Ul) - . (B()ﬁ’u,()) + ﬁ . (BZ ’17:2),
«

Bl(u()ﬂulall_j2) = (ul _U’O)a

Ql— <



and

. 1/, =~
Ba(uo, w1, tiz) = B (U2 + 32Vu0) .

for some positive semidefinite, bounded, matrix—valued B;(x), i = 0,1,2. If, for example,

Dirichlet boundary conditions are imposed on the fissure flow, then we would define B; by

Bo(uo, u1, i2) (vo) = /

1 — 5 —
(E(U,O — ’U,1)’Uo + (B()VUO — Bgm) . V’Uo) ,
Q

) 1
B (uo, u1,d2)(v1) = / —(u1 — up)v1,
Q

R

and

— — 1 — = —
Ba (ug, w1, d2) (V) :/ — (U2 + Bzvuo> - Us.
QB

Other boundary conditions are handled in the usual way. Note that it is not appropriate to
specify the boundary conditions on u; or us. If we adopt the “time delay” interpretation
of the model, this phenomenon is explained by the fact that the boundary values of u;

and us are just the delayed boundary values of ug.

PROPOSITION 3.  Hypothesis [B1] is satisfied provided By is positive semidefinite a.e..

Hypothesis [Bs] is satisfied if By is uniformly positive definite.

Proor. It is clear that B is bounded, B; is Lipschitz continuous, and if uy, — wg in
V C H', then uy, — ug in L2, so By(ux,, -, @xr,) — Bi(uo, -, W2) uniformly on bounded
subsets of L2. The only remaining hypothesis to check is that B is maximal monotone.

The verification that B is monotone is straightforward:

(B(Uo, w1, d2) — By, ﬂ1,7f2), (uo — tp, w1 — U, Uz — ﬁz))v
— R — R 1 “ “ o N
- / (Bo¥ (o — 0)) - V(o — o) + (o — fho) — (s — ) * + (it — i)
Q
> 0.

Since R + B is V-coercive, B is maximal monotone. If By is uniformly positive definite,

then B is V-coercive. [ |

Proposition 2 and Theorem 2’ can be used to prove the existence of solutions to

(3.4) for quite general A. For example, when By is uniformly positive definite, the flow



in the fissures and pores can be modeled by the classical porous medium equations with
A;(u) = u® for @ € (0,1] and 4 = 1 or 2. If the material undergoes a change of phase,
the Stefan problem with A; = I + L sgn, where sgn is the signum operator defined in the
last example of Section 5, is well posed. In both these cases, the flows in the fissures and
pores are modeled using nonlinear Ay and A;, while the flux exchange term must always
be modeled using linear A;. This model was developed in response to a suggestion made
to us by J. I. Diaz.

If By were always uniformly positive definite, we could satisfy ourselves with Theo-
rem (2'). Suppose, however, that Q C IR consists of sheets of porous rock parallel to the
x — y plane, and that fissures separate these sheets. (This provides a model for a layered

medium; see [9] and [6] for alternative models.) Then

bi1 b2 O
Bo=|ba b2 0],
0 0 O

where the 2 x 2 submatrix in the upper left corner is positive definite. The bridging

between the blocks takes place in the vertical direction, so

0
0o 1,
bs3

By =

o O O
o O O

where bsz is positive. Then both V - (ByV) and V - (BT ByV) fail to be H}-coercive, and
Proposition 3 is not applicable to Theorem 2’. This model gives rise to well posed linear
problems, though, subject to Theorem 3. In this case, we take a; € L°(2), a; > 0 a.e.,
and define

@i(u)=/ﬂéai(az)u2(x) dz,

dpi(u)v = /Qaz(ar)u(a:)v(ac) dz.

Take V as in the previous discussion and V =V x L2(Q) x (L? (Q))3 To apply Theorem 3,
we need only show that Rg(A+ B) D V*. Observe first that

- 1 -
VvV-|(By+—BTB
¥ (5o v ) ¥



is V-coercive for any choice of 8 and ap. It follows that for any fo € L?(Q) C V*,
f1 € L2(Q) and f> € (L%(£2))3, there is a unique solution ug € V to the elliptic problem

-V B B> B
(a0+1+aa1>u0 \Y [( O+1+ﬂa2 2 2> VU0:|
1

(6.1)
= fo+ f1—ﬁ- 7ﬁ Bgﬁ .
14+ aa; 1+ ,6012
Having found ug, compute
(6.2) U= T e (uo + af1)
and
1 . .
. g = — B .
(6.3) iy 1+ Bay ( 2V +5f2)

It follows from a direct computation that (ug,u1, %s) is the solution to the problem (A +
B)u = (fo, f1, fé), and hence Theorem 3 is applicable. Note that in this situation, ug may
not be smooth enough to belong to V- C H!(2). It is therefore hopeless to attempt to
apply Theorem 2’ to this model.

Let us now consider the dependence of the solutions of these problems upon the
models. In problems with linear A, the corollary to Theorem 3 gives the continuous
dependence of solutions upon the spatial operator B. Of special interest is the case By — 0,
whereby 5 is uncoupled from the other two components. To apply the corollary, we must
show that for all g € L3(Q) x L3(Q) x (L23(Q2))", the solutions w, to (A + Bp)w, > g
converge to the solution wg of (A+ B)wy > g. When B has the form discussed above, then
this condition is easy to verify when By is positive definite, but we have an important
example for which this assumption is inappropriate. We may, however, apply the corollary
to Theorem 3.

Let (uf,u?,udy) be solutions to (6.1) for a sequence of problems for which 8, — 0
(and By need not be positive definite). Let (ug,u1,s) be solution to (6.1) when 8 = 0.
The inner product of (6.1) with ug (assuming Dirichlet boundary conditions, for example)

gives the identity

/ < . - 1>‘u0| —|—( 0—|—1 ﬂn ; 9 2) V’U/O C’U/O

= ut u"+7(B )-Vu”.
/Qfo 0 1+ozalf1 " 1+ Bray 2 J2 0

(6.4)



Since By + Bn—lang B, is uniformly positive definite, {u§} is bounded in Hg(Q2). It follows
that some (hence, any) subsequence converges weakly in H}(2) to ug. It also follows
from (6.4) that the H}(Q) norms of u? converge to the Hj(£2) norm of ug, so ul — wug
in H}(Q). It then follows from (6.2) and (6.3) that u} — wy in L?(Q) and @} — > in
(L2(2))2.

This example is important because it illustrates the continuous dependence of solu-
tions to (6.1) and the first order kinetic (or viscoelastic) equations (2.7) upon the pa-
rameter 3. Continuous dependence of solutions of the classical fissured medium equation
(2.8) also follows. Note that the conclusion of the corollary is the same as the conclusion
¢} (v) = ¢*(v) from Proposition 2.

Our final consideration is the behavior of solutions upon the operator A. We are
especially interested in the case Ao — 0, because this is the condition which connects our
system (2.5) with the Sobolev-type equation (2.9) and the first order kinetic or viscoelastic
equations with the classical fissured medium equations.

We now verify that the hypotheses (5.2) of Proposition 2 are met when

1) Bis L?(0,T;V)—coercive,

2) There is an element @ in the domain of B for which ¢, (%) is bounded, and

3) Ap(un) — A(u) whenever u,, — u in Hy x H{" x HY, where the superscript w means

that the space is endowed with the weak topology.

Note that this last condition is not particularly restrictive. For example, if A; is defined
by A;, (u) = a;, u, where 0 < ¢ < 2 and the functions a;, € L*° (), then condition 3)
requires only that the functions a;, converge in L*°(Q2). In the example discussed at the
beginning of this section, condition 1) means By is uniformly positive definite. In this
case, an a priori bound on [[up| 2 (g 1.y exists. If f € B(@), then the duality pairing of

d(vy, — 1)

L 4 Bun) = B(@) = f - f

with u,, — % and integration gives
T
¢*(vn(T)) = (vn(T), @) +/O (B(un) — B(it), un — ) dt

= ) = @)+ [ (= Fom =) a



The first two terms on the left are bounded below by —¢*(@); thus, the sequence
lun = @llz2(0,7,yy is bounded. This bound means that uy and iy are bounded in, re-
spectively, L2(0,T; L?(Q)) and L?(0,T; (L?(Q)))3, and so have weakly convergent subse-
quences. The first component, ug, is bounded in L?(0,T; H'(Q2)), and, therefore, has a
subsequence which is weakly convergent in L?(0,T; H'(Q)). It follows from the expressions
for By and By that By(uy,) and Ba(is, ) converge in the weak topologies on respectively,
L%(0,T; L?(Q)) and L2(0,T; (L?(Q2)))3, to elements of, respectively, Bi(u1) and Bs(is).
Similarly, By (uo, ) converges weakly in L?(0,T; V*) to Bo(ug). From the differential equa-
tion (5.1), dv/dt must have a weakly convergent subsequence, and the limits must satisfy
the differential equation (3.4). Condition 3) is precisely what is needed to verify is that
v € A(u).

As indicated in the examples following Proposition 2, it follows that up, — uo in V,
w1, — uy in L?(Q) and @y, — U in (L2(Q2))3. The first component can be, for example,
the Yosida approximations to the Stefan or porous medium operators, as indicated in the
last example of Section 5. Other examples include the promised case of ag — 0, whereby

continuous dependence of the models indicated in Section 2 is obtained.
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