DIFFUSION IN DEFORMING POROUS MEDIA
R.E. SHOWALTER

ABSTRACT. We report on some recent progress in the mathematical theory of
nonlinear fluid transport and poro-mechanics, specifically, the design, analysis
and application of mathematical models for the flow of fluids driven by the cou-
pled pressure and stress distributions within a deforming heterogeneous porous
structure. The goal of this work is to develop a set of mathematical models
of coupled flow and deformation processes as a basis for fundamental research
on the theoretical and numerical modeling and simulation of flow in deforming
heterogeneous porous media.
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1. INTRODUCTION

Deformation of a saturated porous solid affects the flow of fluid through it,
and the fluid pressure contributes to the mechanical behaviour of that structure.
Since the load on such a porous structure is supported by both the solid matrix
and the fluid in the pores, the coupling of the stress in the solid to the pressure
of the fluid plays an essential role. It involves the dilation or contraction of the
deforming matrix and the pressure gradient of the diffusing pore fluid. In the
classical consolidation process, a load is initially shared with the pore fluid, and
with time the pore fluid pressure dissipates and the load is increasingly born by the
porous solid matrix. The diffusing pore fluid thereby has an important effect on
the mechanical response of the matrix. That is, for more slowly applied loads the
material response appears less stiff, since the fluid has relatively more time to diffuse
away. Conversely, the dilations of the matrix modify the porosity and thereby
enhance the fluid flow. The classical Biot model of this process was developed in soil
science, and it has been refined considerably for the increasingly more demanding
needs in engineering and geophysics [17], [44], [63]. The simplest model describes
the evolution of the scalar field of fluid pressure p(x,t) and the vector field of solid
displacement u(x,t) from the position x € € at time ¢ > 0. For a homogeneous
and isotropic medium the classical linear poroelasticity system takes the form

(1a) pun(z,t) = A+ p)V(V - u(z,1)) — pAu(z,t) + aVp(z,t) = f(z,1),
(1b) copt(x,t) =V - kVp(x,t) + oV - u(z, t) = h(x,t).

The physical coefficient co(z) > 0 is related to the compressibility of the fluid
as well as the porosity of the medium at z € 2. Namely, it is a measure of the
amount of fluid which can be forced into the medium by pressure increments with
constant volume. Similarly, k(z) > 0 involves the wviscosity of the fluid and the
permeability of the medium at x € (2 as a measure of the Darcy flow corresponding
to a pressure gradient. The parameter o > 0 accounts for the mechanical coupling
of the fluid pressure and the porous solid. Namely, the term oV -u(x,t) represents
the additional fluid content due to the dilation of the structure, and aVp(x,t) is
the additional stress within the structure due to the fluid pressure. The coefficient
p(x) > 0 is the local density, and we obtain the Lamé constant A and shear modulus
w from elasticity of the medium. The system (1) was obtained by Biot [10] from
a phenomenological approach, and it has been subsequently derived by techniques
of homogenization theory [3], [4], [13] and mixture theory [12], [38], [63]. The
fundamental basis of the system is widely accepted [17]. Of particular interest is
the quasi-static case p = 0 which results from negligible inertia effects and describes
the slow deformations associated with consolidation and the associated seepage of
fluid. The wncompressible case ¢y = 0 leads to yet another source of degeneracy in
the system.

1.1. Applications. Various refinements and extensions of this model are well
suited for specific applications in geomechanics, but they frequently lack precision
in prediction. Not only is there limited agreement on which models are appropri-
ate for specific problems, but the recently developed sensor technologies continue
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to deliver large amounts of very detailed data which will be useful only with ap-
propriate models that can assimilate this additional information. Natural geologic
materials are rarely homogeneous on the scale of interest, and this is especially
true for soils and particularly for naturally fractured reservoirs or aquifiers. This
lack of homogeneity on the scale of interest often leads to highly singular problems
and to spatial nonlocality of constitutive models for flow. Modern applications
require models containing various sources of nonlinearity such as capillary effects
in the smaller pores, faster flow in the larger fissures or macropores, hysteresis
effects due to partial saturation of the fluid or to plasticity of the material, and the
transport of multiphase fluids. The complexity of the fully coupled models and the
general lack of theoretical background available for the qualitative behavior of the
solutions have complicated the process of selecting appropriate models for specific
applications and have delayed the development of rigorous numerical error studies
[39], [44], [60].

Related systems arise in many diverse areas. For example, the Biot deformation-
diffusion system (1) is formally equivalent to the classical linearized thermoelasticity
system which describes the flow of heat through an elastic structure. In that
context, p(x,t) denotes the temperature, cy > 0 is the specific heat of the medium,
and k£ > 0 is the conductivity. Then aVp(z,t) arises from the thermal stress in the
structure, and the term aV -wu;(x,t) corresponds to the internal heating due to the
dilation rate. We have not made the uncoupling assumption in which this term is
deleted from the diffusion equation. For the theory of the fully-dynamic system (1)
with p > 0 in the context of thermoelasticity, see the fundamental work of Dafermos
[19], the exhaustive and complementary accounts of Carleson [15] and Kupradze
[32], and the development in the context of strongly elliptic systems by Fichera [27].
By contrast, very few references are to be found in the thermoelasticity literature
for well-posedness of even the simplest linear problem for the coupled quasi-static
case of (1) in which the system degenerates to a mixed elliptic-parabolic type. Such
a system in one spatial dimension is developed by classical methods in the book
of Day [22]. One can extend to this system many of the results for the classical
diffusion equation; see the comprehensive book of Cannon [14]. For the nonlinear
contact problem for coupled quasi-static thermoelasticity in one dimension see
Allegreto-Cannon-Lin [1]. In Shi-Xu [46] the problem on the 2D disk is developed
by decoupling the displacement to get a single integral-differential equation. The
existence of a solution for the general N dimensional contact problem was given
in Shi-Shillor [45] under the assumption that the coupling coefficient is sufficiently
small. This ‘smallness’ condition was removed by Xu [62]. According to a scaling
argument in Boley-Wiener [11], it appears that the reasons for taking p = 0 apply as
well to simultaneously delete the term o'V - 4(t) and thereby uncouple the system,
so these two assumptions are frequently taken together in the thermoelasticity
context; also see Esham-Weinacht [25] for the behaviour as p — 0. However the
coupling plays an essential role in poroelasticity where a ~ 1.

In recent work of Preziosi-Farina [26], [42], we find that similar models arise in
the description of composite materials manufacturing processes to describe resin
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transfer molding and structural resin injection molding. These consist of the in-
jection of a liquid into a porous medium made of reinforcing elements. Here the
infiltration is coupled with both the rheological properties of the liquid (thermal
variation and curing) and the mechanical properties of the solid form. The result-
ing highly nonlinear problem consists of conservation equations for mass, momen-
tum, and energy together with a polymerization or cure equation for the saturated
solid-liquid mixture. It differs from the corresponding geomechanical problem of
soil consolidation with regard to the range of parameters of interest and in the
addition of an equation that describes the cure process of the liquid. By contrast,
the plastic behaviour of the solid is more complicated in soils.

Highly nonlinear systems of the form (1) arise in the biomechanics of soft tissues;
see the discussions of Lai-Hou-Mow [33] and the extension of Huyghe-Janssen [31] to
large-deformation models. Biological porous media such as tissues and cartilage in
contact with changing salt concentrations exhibit swelling or shrinking that depend
on a combination of electrostatic forces and hydration forces similar to that in clays
and shales and gels. Here the characteristic pore size can be close to the molecular
level and, in addition to the pressure, also chemical concentrations and electrical
gradients are necessary to describe the fluid flow, deformation, and ion flow; see
the works of Cushman-Murad [18], [38]. Swelling colloidal systems are much more
complicated than granular or well-structured geologic media. In these biological
applications, the electrostatic forces are often dominant. The theory of multiporous
media, as originally developed for the mechanics of naturally fractured reservoirs,
has found applications to the description of blood perfusion. The coronary vascular
system is an example of a pore structure inside a deforming solid, namely, the heart
muscle. The muscle is subject to large deformations and the pore structure is highly
organized on differing scales. The resulting scales of porosity correspond to arteries,
arterioles, capillaries, venules and veins. Each has a characteristic pore size, blood
velocity and mechanical properties. The coupling between the blood perfusion and
the deformation of the muscle tissue has been well documented [56, 40].

Although we shall focus our following discussion on the applications in geome-
chanics, one should remain aware that the mathematical theory may be used as
well in the development of many other important topics.

1.2. Objectives. It has been our intention to develop the mathematical theory
of various coupled deformation and flow systems and investigate their suitability
for corresponding applications. We shall begin with the theory of the basic Biot
system for granular media and then extend this to include multiple phases and
multiple components, non-Darcy flow in regions of higher fluid velocities, viscous
and hysteresis effects appropriate for certain soils and rock types, nonlinear material
constitutive relations which permit visco-elastic-plastic deformation of the matrix,
and multiscale effects arising from upscaling.

The well posedness of the systems of partial differential equations that serve
as appropriate models, both quantitative and qualitative properties of their solu-
tions, and the effects of individual terms in the systems will be investigated. These
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require estimates or properties of solutions for comparative analysis of the appro-
priateness of each of these systems as a model for the intended application from a
mathematical and numerical point of view. Selected quantitative results delivered
by numerical simulations will be validated when possible against available field
data or examples.

2. RECENT RESULTS

2.1. The Linear Quasi-Static Case. Although there is an enormous amount of
literature concerning the applications of the coupled quasi-static case of the Biot
system (1) to engineering and geophysics problems in poroelasticity, one finds very
few references devoted to the fundamental mathematical issues, even for this sim-
plest system. The first results on well-posedness of the quasi-static case of the
basic system (1) appeared in the fundamental work of J.-L Auriault and Sanchez-
Palencia [3]. There the meaning of the various coefficients was given by means of
homogenization. The later paper of Zenisek [64] deals with existence of solutions,
and there one has not only p = 0 but also the additional degeneracy of the incom-
pressible case, cg = 0. These seem to be the only such references which address
the fundamental well-posedness for the coupled quasi-static case, but additional
issues of analysis and approximation of this case were already raised in [39], [3§],
[63]. We started our study with the analysis of existence, uniqueness and regular-
ity properties of solutions to the linear quasi-static Biot problem [48]. The model
was extended to include the exposed pore fraction on the boundary and secondary
viscosity effects. If we denote the characteristic function of the traction boundary,
I'; by x¢, the initial boundary value problem takes the form

(2a) —A+ )V (V- u(t)) — pAu(t) + Vp(t) = 0 and
(2) 9 feoplt) + ¥ - u(t)) ~ VKV (p(1)) = ho(t) in 2.
(2c) u(t) = 0 on Iy,

(2d) oij(u(t))n; —p(t)n; =0, 1 <i <3, on I}y,
(20 2 ey m) (1 B+ k22D <y on
(2f) Tim (cop(t) + V - u(t)) = vy in L(Q),

(22) lim (1 — 3)(u(t) -n) = vy in L*(Ty).

t—0t

The partial differential equations (2a), (2b) comprise the quasi-static case of the
Biot system (1). The boundary conditions (2c), (2d) are the complementary pair
consisting of null displacement on the clamped boundary, 'y, and a balance of
forces on the traction boundary, I';, and (2e) requires a balance of fluid mass.
The function ((-) is defined on that portion of the boundary I'; which is neither
drained nor clamped, and it specifies the surface fraction of the pores which are
sealed along T';. Here the hydraulic pressure contributes to the total stress within
the structure. The remaining portion 1 — () of the pores are exposed along Ty,
and these contribute to the flux. On any portion of I'; which is completely exposed,
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that is, where 0 = 0, only the effective or elastic component of stress is specified,
since there the fluid pressure does not contribute to the support of the matrix. On
the entire boundary there is a transverse flow that is given by the input h;(-) and
the relative normal displacement of the structure. This input could be specified
in the form hy(t) = —(1 — B)v(t) - n, where v(t) is the given velocity of fluid or
boundary flux on I';. The first term and right side of this flux balance is null
where 5 = 1, so the same holds for the second terms in (2e), that is, we have the
impermeable conditions k:ag—g) = 0 on a completely sealed portion of I';. We also
note that in (2e) the first term on the left side and the right side of the equation
are null on I'y, so the same necessarily holds for the second term on the left side.
That is, we always have the null flux condition k% =0on [y

We proved in [48] that the initial-boundary-value problem (2) is essentially a par-
abolic system which has a strong solution under minimal smoothness requirements
on the initial data and source h(-). In particular, the dynamics of the problem
corresponds to an analytic semigroup in L? for strong solutions and in H~! for
weak solutions.

2.2. Composite Deformable Porous Media. The simplest and most frequently
used model of flow in a rigid fully—saturated but heterogeneous medium with sev-
eral distinct spatial scales which allows for qualitatively different properties is the
Barenblatt double—diffusion model. This consists of the combined effects of two dis-
tinct components in parallel. Both components occur locally in any representative
volume element, and they behave as two independent diffusion processes which are
coupled by a distributed exchange term that is proportional to the difference in
pressure between fluids in the two components. In the special case which is used
to model naturally fractured media, the first component of the model is the highly
developed fracture system and the second is the porous matrix structure. See
Barenblatt et al [6], Bai et al [5], Bear [7], Warren-Root [59]. In the more complex
models of double-diffusion combined with deformation, both of the pressure fields
contribute to the stress field of the structure, so it is necessary to incorporate Biot’s
concepts into the Barenblatt model. The momentum equations contain contribu-
tions to total stress from each of the two pressure fields, and the two equations of
fluid transport follow from the continuity of fluid mass and consideration of the
effects of dilation of the structure on the flow in both of the components. The fluid
transport within this composite deformable porous medium is described by a pair
of pressure equations for diffusion in the respective components of the medium
together with an exchange term. This simplistic combination of the Barenblatt
double—diffusion model with the Biot diffusion—deformation model has been de-
veloped and used extensively in the engineering literature, and it takes the form

(3a) — A+ p)V(V-u(z,t)) — pAu(z,t) + oy Vpi(t) + aaVpa(t) =0,
(3b) api(t) = V- kVpi(t) + aaV - a(t) + y(pi(t) — p2(t) = ha(t)
(3c) Capo(t) — V - koVpo(t) + oV - u(t) + y(pa(t) — pit)) = hao(t).
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This describes consolidation processes in a fluid-saturated double-diffusion model
of fractured rock. See Beskos-Aifantis [9], Wilson-Aifantis [61], Huyakorn-Pinder
[30], Valliappin-Khalili-Naghadeh [57], Berryman-Wang [8].

The mathematical aspects of the Barenblatt-Biot model (3) for elastic deforma-
tion and laminar flow in a heterogeneous porous medium were developed in work
with Momken [51]. This includes the treatment of various relevant degenerate
cases, such as incompressible constituents or totally fissured components, and it
includes the boundary conditions arising from partially exposed pores. The quasi-
static initial-boundary problem is shown to have a unique weak solution, and this
solution is strong when the data are smoother. The dynamics is shown to be ana-
lytic only in the non-degenerate case. Of course, we know from the rigid case that
this is essentially the best that could be expected.

2.3. The Deforming Dam. The coupling of geomechanics with multiphase low
and transport problems arises in such areas as reservoir simulations, environmental
studies, soil science, and the modeling of sediment regions [34], [44]. For air-water
systems, Zienkiewicz and co-workers [63] have provided a derivation of such models
by hybrid mixture theory. This direction has extremely important applications to
dam behavior during earthquakes, and it is generally relevant to water transport in
the vadose zone of soils. Such models must account for variations in the saturation,
density, pressure and permeability, and this leads to a highly nonlinear system of
partial differential equations for multi-phase flow.

Our recent work with Su [53] on the deformable dam problem contains the first
proof of existence for a deforming partially saturated medium. This includes the
classical free-boundary problem with a phreatic surface in which the saturation S(-)
is given by a continuous monotone function that increases from near zero to unity
in the vicinity of the capillary tension. Diffusion of the slightly compressible fluid
is through a partially saturated porous and elastic medium Q C IR®. Denote the
fluid density by p(x,t) and its pressure by p(z,t) for z € Q. The fluid is barotropic,
i.e., the density and pressure are related by a state equation p = p(p), with a
non-decreasing constitutive function p(-) that characterizes the type of fluid. For
a homogeneous and isotropic medium the partially saturated consolidation problem
takes the form

(42) SO+ V(Y W)~ p+ V() p) = B, ),
(1) (OIS )pr) + VW) + V- (plp) @) = Flo,1),
(4c) q=—k(p)(Vp+p(p)g).

This system consists of the equilibrium equation for momentum conservation, the
storage equation for mass conservation, and Darcy’s law for the filtration velocity,
q. The function ¢(-) is porosity, S(-) is saturation, and k(-) is the permeability
for the laminar flow in the medium. All of these functions are non-negative and
pressure dependent. The (linearized) strain tensor ey (u) = 5 (9w + Gyuy) provides
a measure of the local deformation of the body, and the term V - u = gg(u)
represents the fluid content due to the local volume dilation. The total stress o;;



8 R.E. SHOWALTER

is the sum the effective stress of the of the purely elastic isotropic structure given
by Hooke’s law and effective pressure stress of the fluid on the structure, hence,

045 = >\5ij5kk + 2:u€ij - 5ZJX(p)p7

with positive Lamé constant A and shear modulus p. The Bishop function x(-)
is a measure of the fraction of pore surface in contact with the fluid. Let the
negative pressure py < 0 denote the capillary tension. The saturation function
S(-) is monotone with S(p) = 1 for p > pg, and the Bishop function is well
approximated in many situations by x(p) &~ S(p). There is a fully saturated region,
{z € Q: p(x,t) > po}, while in the capillary fringe, {x € Q : p(x,t) < po}, the
medium is only partially saturated. The phreatic surface {x € Q : p(z,t) = po}
is the unknown free surface that separates these regions. The boundary of € is
given by the disjoint union of the parts I'p and I'y;, and I'y; is further written
as the disjoint union of I'y and I'yy. The part I'y; is the flux boundary. On its
complement, I'p, the value of pressure is given by the depth below the surface:

(4d) p(z,t) = d(z3), z = (z1,22,23) € I'p,
where d(-) > 0. On I'y there is no flow, so we have a null normal flux:

(4e) p(p)q-n=0, x ey,

where n is the unit outward normal on the boundary, 2. On I';; we have

(4f) p<0, plp)a-n>0, pplp)q-n=0, z€Ty.

This implies that the fluid pressure on the boundary cannot exceed the outside
null pressure of air, and there can be no flow into €2. Also, p = 0 on the seepage
surface which is that part of I'y where q - n > 0, and there is no flow from the
boundary above that, where p < 0. The boundary conditions on 92 also involve
the displacement or the tractions o;;(x,t)n; on 02, namely,

(4g) u;=0o0nTly, oz, t)n;=t;only, 1<i<3,

where 'y and I'y, are given complementary subsets of the boundary. Finally, the
initial value of the water content 6y(-) is specified,

(4h) ¢(p(,0))S(p(x,0))p(p(x,0)) + V- u(z,0) = Oo(x), =€,

where the initial displacement satisfies the constraint
—(A+ p)V(V - u(z,0)) — pAuz, 0) + V(x(p(x, 0)) p(z, 0)) = F(z,0)

together with the boundary conditions (4g).

This work has more recently been extended in [54] to the Barenblatt-Biot system
(3). This covers the multi-phase multi-component situation of a composite medium
of two components, each of which can be independently partially-saturated. Thus,
the model tracks the partial saturation in both the fracture system and in the small
scale pore system, thereby leading to a pair of free surfaces.
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3. CURRENT PROGRESS

3.1. Visco-Plastic Media. Linearization of a model for a swelling clay with sec-
ondary consolidation, as derived by Cushman and co-workers [38] using hybrid
mixture theory, yields the system

—pV(V - u(x, 1) = (A + 1) V(V - u(z, 1))
—pAu(z,t) + aVp(x,t) = f(x,t),

cope(t) = V - kVp(t) + aV - uy(t) = h(x,t).

The new term p* > 0 introduces a wviscosity effect into the quasi-static form of
(1), and this system is another interesting example of a degenerate implicit evo-
lution equation [16]. The theory developed in [48] included this situation, and it
was shown there that the addition of u* decreases the regularizing effects of the
dynamics. That is, the addition of this viscosity term serves to decrease or delay
the dissipation in the system.

More important are the dissipation processes that lead to hysteresis phenomena.
For example, saturation and (to a lesser extent) permeability exhibit a hysteretic
dependence on the pressure. Visco-elastic and elasto-plastic behaviors of the ma-
terial are common, especially in soils. Plasticity is an essential element for the
description of soils and generally for materials of interest in geomechanics. Vari-
ous approaches to include appropriate constitutive equations have been developed,
and many numerical codes include plasticity models [17], [37], [44], [63]. Another
example arises from the irreversible fluid content that corresponds to the plastic
porosity of the porous medium. Such examples illustrate the need for the inclusion
of hysteresis in models of deforming porous medium.

We had previously studied such memory dependent phenomena as secondary
viscosity and hysteresis effects in models of flow and transport in (rigid) porous
media by nonlinear semigroup techniques as in [41], [50], [52], [58]. In recent work
with Ulisse Steffanelli [55], we have developed a very general model for Darcy flow
through a viscous-plastic medium as the coupled system of partial differential and
functional equations

(52) 2(cop+aV -u) — V- k(Vp) = i *h,
(5b) pg—;u—vﬂ*(%(v.u)) —V'U—i-onp:pl/sz’
(5¢) o = H(e(w)),

in the cylindrical domain Q2x(0,7"), where ) is a non-empty bounded and open set
in IR® with smooth boundary I' = 9, and (0, 7)) is the time interval of interest.
Also, ho: Q2x(0,T) — IR and f,: Qx(0,T) — IR® are suitably given functions.
The system (5) is complemented with suitable boundary and initial conditions. We
introduce a pair of partitions of the boundary I' into complementary sets {I'g, '}
and {I';,I;}. Set I'y =T, NIy and let the measurable function §:I'y — [0, 1]
be prescribed as before. We seek a solution of (5) that satisfies the boundary
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conditions

(6a) p =0 on [y,
(6b) k(Vp) -n—af % (u-n) =0 on I'y,
(6¢) u =0 on T,
(6d) (2(V-u)n+on—a(l—F)pn =0 on I'.

Here n stands for the unit outward normal vector to I', and (on); = o;;n; is the
normal stress. Finally, we require the solution to satisfy the initial conditions

(7&) Cop(‘,O) = Copo(‘) on Q,
(7b) u(-,0) = uo(), pu-,0)=pvo(-) on &,
(7c) o(-,0) = oo() on &,

where pg, ug, vy, and oq are suitably given functions.

The system (5) consists of the diffusion equation for the pressure, the conser-
vation equation for momentum, and a constitutive relation for the deformation
response of the medium, respectively. The constitutive relation (5c¢) involves the
stress o and the small strain tensor e(u), and p* > 0 arises from secondary con-
solidation effects. We briefly comment on the boundary conditions. First of all,
the fluid is drained on the portion I'; and the medium is clamped along I'.. The
relations (6b) and (6d) are constraints on fluid flurz and traction, respectively. On
the set I'y, where neither p nor u is prescribed, the function 3 comes into play.
This function specifies the fraction of the pores of the medium that are exposed
along I'y. Indeed, for these pores, the motion of the solid adds their contents to the
fluid flux through the term [ % (u . n) in (6b). In the remaining portion, the sealed
pores, the hydraulic pressure contributes to the total stress within the structure,
and this is the origin of the normal pressure term (1 — )pn in (6d).

Let us emphasize that a very extensive variety of models is included in the system
(5). Moreover, the theory developed in [55] permits highly degenerate situations in
which some (or even all) of the parameters co(+), p(-), #*(+), and k(-) may vanish!
Specifically, we include any combination of the quasi-static case, p = 0, the incom-
pressible case, ¢y = 0, the uncoupled case, a = 0, and even the impermeable case,
k = 0. The model for the porous solid is a very general rheological material made
up of the parallel combination of elementary components of various types, elastic,
viscous, and plastic, with combinations of kinematic and isotropic hardening. Such
a construction requires the introduction of internal variables [28], [58]. In addition,
the system is generalized to include quasilinear diffusion k(-) and nonlinear dissi-
pation p*(-). We are able to prove existence and uniqueness of a strong solution
of this nonlinear and degenerate system without any coercive-type assumptions on
any of the operators in (5a) or (5b)! Rather, all of the essential assumptions are
restricted to the constitutive relation (5c¢), and these consist of a variant of the
safe load condition. Additional work currently underway includes the extension to
composite structures with multi-porous characteristics and coupled fluid flow and
heat conduction within the deforming solid, as well as such geomechanic coupling
with non—Darcy flow models.
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3.2. Multi-Scale Problems. The parallel structure of the Barenblatt-Biot sys-
tem (3) limits both the property types of materials and the fine-scale geometry
of the two-component models that can be represented. Distributed microstructure
systems can assimilate into the model the detailed fine-scale geometry and the
multiple scales, and they can better quantify the exchange of fluid and momentum
across the intricate interface between the components. Such systems frequently
arise as the limit by homogenization of corresponding exact but highly singular
partial differential equations with rapidly oscillating coefficients. This provides not
only a derivation of the model systems, but shows also the relation with the clas-
sical but singular problem on the microscale, and it provides a method for directly
computing the effective coefficients which represent averaged material properties.
Homogenization techniques have been used to identify and develop more realistic
models of multi-porous or multi-permeable composite media in the rigid case, and
one can consult [2], [24], [29] for representative results. Homogenization methods
were also used by Auriault—Sanchez-Palencia [3] and by Burridge-Keller [13] to
derive the Biot system. One starts on the microscale with the Navier elasticity
system for the solid deformation coupled to a Stokes flow system for the fluid and
obtains the Biot system (1) in the limit as the spatial scale goes to zero. For various
situations, Auriault et al [4], [29] used appropriately scaled coefficients to construct
the distributed microstructure models which led to differing macroscale behaviors.

With the intent of gaining more experience with the types of structures that
can be obtained from various geometries and scalings of the microstructure of a
deformable porous medium, we have applied homogenization methods to upscale
from the micro-scale or an intermediate meso-scale to the macro-scale in a number
of cases. The components on the micro- or meso-scale are described by either
a Stokes, a Darcy or a Biot system for the first component, the macropores or
fractures, and either a Navier, a Darcy or a Biot system for the second component,
which comprises the solid or microporous structure, with coefficients appropriately
scaled, the choice being dependent on the specific application and range of scales
anticipated. An important technical aspect for each case is the appropriate set of
boundary conditions to use at the interface between the various systems.

To illustrate with a relatively simple example the types of systems that emerge,
we describe the highly heterogeneous micro-model and the limiting form of the
corresponding Darcy-Biot distributed microstructure system which is the macro-
model for the composition of a rigid porous and permeable system intertwined on a
fine-scale with a periodic array of very compliant elastic inclusions of much lower
permeability. Thus, the permeability is scaled by €? in the inclusions, just as in the
fractured medium model of Arbogast-Douglas-Hornung [2], and we scale the elastic-
ity similarly. We expect small deformations to be activated by the high-frequency
pressure gradients.

Let’s begin with a description of the geometry of the microstructure. The macro-
porous and permeable structure with local inclusions is periodically distributed in
a domain  in IRY with period €Y, where ¢ > 0 and Y = [0, 1]V is the unit cube.
Let Y be given in complementary parts, Y7 and Y5, which determine the local ge-
ometry of the porous structure and the inclusions, respectively. Denote by x,,.(y)



12 R.E. SHOWALTER

the characteristic function of Y;, for m = 1,2, extended Y-periodically to all of IRY.
Thus, x1(y) 4+ x2(y) = 1. We shall assume that the set {y € RY : xi(y) = 1} is
smooth and connected. The domain €2 is thus partitioned into the two subdomains

an:{er:Xm(g):1}, m=1,2.

Let I'f, = 0927 N 05 N be that part of the interface of Q] with Qf that is interior
to 2, and let I'\o = 9Y; N 0Y5 N'Y be the corresponding interface in the cell Y.
Likewise, let I'sy = Yo N JY and denote by I'5, its periodic extension which forms
the interface between those parts of the second component €25 which lie within
neighboring eY-cells. These are the local inclusions and we denote them by Y.
The second component 25 may be connected, but this is not required.

The flow in the porous structure €27 is described by a Darcy system that is cou-
pled across the interface I'{, to a Biot system for the slow flow and deformation in
the inclusions Q5. In the region Q5 we scale the permeability by 2. Thus, we shall
denote by ¢,, and 2™V, the compressibility and the permeability, respectively,
in € . m = 1,2. The fluid pressure in the macroporous region 2] is denoted by
p5(z,t) and the corresponding fluz there is given by —r1 Vp5. The pressure in the re-
gion Q5 is p5(z, t) with scaled flux —e2k,Vp5. Tt is the resulting very high frequency
spatial variations in the pressure gradients in the second component which lead to
local storage and corresponding local deformations. These are described by the
(small) displacement u(z,t) from the position z € Q5, and e (u) = 5(Jyw + Ouy,)
is the (linearized) strain tensor. The stress o(u) is given by the generalized Hooke’s
law o;(u) = i eri(u) with the positive definite symmetric elasticity tensor a;j
for a general anisotropic material. The boundary conditions will involve the sur-
face density of forces or traction o;;n;. The normal will be directed out of 25. The
elastic structure is described by the bilinear form

e(u,v)E/ aijklakl(u)ﬁjvid:c:/ aiji € (0)gij(v) do
Q

Q3
on the space Ve = {v € H(Q): v =0 on Q5} of admissable displacements. The
local operator is obtained by means of Stokes’ theorem, that is,

e(u,v) = /Q E(u(x)) - v(z)de

€
2

€
2

where the formal operator is given by £(u); = —0;a;m e (u), 1 <@ < 3, whenever
u, veVand E(u) € [L*(Q9)]°.

The Darcy flow in the first component and the Biot system for the second com-
ponent are given by the highly heterogeneous system

api — V- (k,1Vpi) = I in QF,
ops Ip3
=p5, K =e?ky—=2, u"=0 onT%,,
P1 = D2 Yon 25, 12

copy — V- (e2koVp5) + 0.V -1 = F,  and
pgﬁa + 528(118) + b€Vp§ = f2 , in Qg ,
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which is the exact model of the fine-scale structure. It is supplemented with appro-
priate initial and boundary conditions, and then it follows that there is a unique
solution pj(x,t), p5(x,t), u®(x,t), « € Q for each € > 0. Moreover, the three
sequences of functions have two-scale limits as ¢ — 0, and these are given by the
triple of functions pi(x,t), Pa(x,y,t), U(x,y,t), x € Q, y € Y5. Then we show
that this triple is a solution of a Darcy-Biot distributed microstructure system
which we now describe.

The global flow in the porous structure is determined on the macro-scale by the
macroscopic Darcy equation

Gapn (2, ) — %A?M +/ @% ds = Fi(z,t), z€Q,
IRD)

where fl“lz @W ds is the exchange term representing the flow into the local

inclusion Yy at the point € 2. The flow and deformation within the re-scaled
Y are given by the local Biot system

C2P2($C,y,t) - Vy : fizvyp2(33,y,t) + bovy . U(l’,y,t) = F2(x7y7t> Y € Y27
PQ(ZL’,S,Z%) :pl(l’,t), S & Flg,

Py(z,s,t) and KoV, Ps(x, s,t) are Y-periodic on I'yy,

0
pUz(x>y7t) - @ (O-zyj(U(x7y7t)) - 5ijb0P2($ayat)) = 07 Yy e Y2>
J

U(x,s,t) and o};(U(z, s,t))n; — boPa(z, s5,t)n; are Y-periodic on 'y,

U(x,s,t):O, sely.

The subscript y on the gradient indicates that the derivative is taken with respect
to the local variable y. The solution Py(-,-), U(:,-) of the local system depends on
the global pressure p;(-) at the point x € 2. Because of the small size of the cells,
this pressure is assumed to be well approximated by the “constant” value p;(z,t)
on the interface I'j,. Note that if the deformation is suppressed in this system, i.e.,
if U(z,y,t) = 0, then this is precisely the model of Arbogast et al [2] for single
phase flow in a doubly-porous medium.

This Darcy-Biot model is a very special case, intended only to suggest the struc-
ture of the limiting initial-boundary-value problems that arise, and the micromod-
els that come from the particular applications always lead to considerably more
complicated distributed microstructure models. One can use Biot systems for each
component and scale the parameters for each component in a wide variety of ways,
the choice being dependent on the situation. Also, one can start with a Biot system
for the structure coupled to a fluid flow model either of Stokes type or of slightly
compressible flow type and then investigate the limiting form of the composite for
various scalings of the parameters. Similar Biot-Biot models have been constructed
for the mechanics of soft biological tissues. These are based on the hypothesis that
tissue can be regarded as a composite cellular poroelastic material composed of a
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poroelastic extracellular matrix in which poroelastic cells are embedded. These
models account for the difference between the local and global cellular fluid pres-
sures, and these depend on the various coefficients and characteristic length scales
of cells and tissue. This behaviour is similar to the secondary consolidation phe-
nomenon sometimes observed in geomechanics. Our experience suggests that the
resulting distributed microstructure systems provide accurate models which include
the fine scales and geometry appropriate for many situations, but we have to bal-
ance our need for such detail with the tolerance for extra effort required to solve
the system or to simulate solutions.

4. CONCLUSION

Our long range objective is to develop a set of comprehensive models incorpo-
rating many of the preceding cases as components in a modular format and to
combine them with available subsurface flow and transport simulators as a basis
to perform basic research on the theoretical and numerical modeling and simu-
lation of deforming heterogeneous porous media. The models will be designed to
apply to specific application areas. They will build on established cases and be
enhanced to include previously neglected effects, which are important in various
emerging applications. They must account for complex nonlinear behavior and
media heterogeniety as described above. The fundamental issues of scale arise
in the consideration of multi-component media, since porosity, permeability and
compliance often occur on several distinct spatial scales in both natural and man-
ufactured materials. These may be fractures or simply regions of extremely high
permeability with large correlation lengths. The goal is to develop models whose
components are simple enough to be analytically or numerically tractable but suf-
ficiently detailed to capture the nonlinear effects and fine scale interface geometry
that complicate the competition between long and short time behavior of transport
and consolidation processes.

Although this modular format will include many of the cases above, not all of
the components or extensions need be used for any specific application. Thus it
will be necessary to determine which components are relevant for an individual
application, depending on such things as the range of the variables, the time scale
of the motion, and the spatial scale relevant for the application. This information,
together with that obtained from the analysis of the various components, will be
used to decide which of the modules are appropriate for a specific application. Each
of the models will have an established mathematical basis, and we are extending
these to include the composite poro-mechanical systems that are constructed to
meet the needs of the specific applications.



DEFORMING POROUS MEDIA 15

REFERENCES

[1] W. Allegretto, J.R. Cannon, and Yanping Lin, A parabolic integro-differential equation aris-
ing from thermoelastic contact, Discrete Continuous Dynam. Systems 3 (1997) pp. 217-234.

[2] T. Arbogast, J. Douglas, Jr., and U. Hornung, Derivation of the double porosity model of
single phase flow via homogenization theory, STAM J. Math. Anal. 21 (1990), pp. 823-836.

[3] J.- L. Auriault, E. Sanchez-Palencia, Etude du comportement macroscopique d’un milieu
poreux saturé déformable, Journal de Mécanique 16 (1977), 575-603.

[4] J.- L. Auriault, T. Strzelecki, J. Bauer, S. He, Porous deformable media saturated by a very
compressible fluid: quasi-statics, Eur. J. Mech., A/Solids, 9 (1990), 373-392.

[5] M. Bai, D. Elsworth and J.-C. Roegiers, Multiporosity/multipermeability approach to the
stmulation of naturally fractured reservoirs, Water Resour. Res. 29 (1993), 1621-1633.

[6] G.I. Barenblatt, I.P. Zheltov, I.N. Kochina, Basic concepts in the theory of seepage of homo-
geneous liquids in fissured rocks, J. Appl. Math. and Mech. 24 (1960), 1286-1303.

[7] J. Bear, “Dynamics of Fluids in Porous media”, Elsevier, New York, 1972.

[8] J. Berryman and H. F. Wang, ‘The elastic coefficients of double-porosity models for fluid
transport in jointed rock’, J. Geophys. Res., 100, 24611-24627 (1995).

[9] D.E. Beskos and E. C. Aifantis, On the theory of consolidation with double porosity - II, Int.
J. Engrg. Sci. 24 (1986), 1697-1716.

[10] M. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941), 155-
164.

[11] B.A. Boley and J.H. Weiner, Theory of Thermal Stresses, Wiley, New York, 1960.

[12] R. M. Bowen, Compressible porous media models by use of the method of miztures, Int. J.
Engng. Sci. 20 (1982), 697-735.

[13] R. Burridge and J. B. Keller, Poroelasticity equations derived from microstructure, J. Acoust.
Soc. Am. 70 (1981), 1140-1146.

[14] J.R. Cannon, “The One-Dimensional Heat Equation”, in Encyclopedia of Mathematics and
its Applications, G.-C. Rota, ed., Addison-Wesley, Reading, Mass., 1984.

[15] D.E. Carleson, it Linear Thermoelasticity in “Handbuch der Physik”, VIa/2, Springer, New
York, 1972.

[16] R.W. Carroll and R.E. Showalter, “Singular and Degenerate Cauchy Problems”, Academic
Press, New York, 1976.

[17] O. Coussy, A general theory of thermoporoelastoplasticity for saturated porous materials,
Transport in Porous Media 4 (1989), 281-293.

[18] J.H. Cushman, “The Physics of Hierarchical Porous Media: Angstroms to Miles,” Kluwer
Academic, Dordrecht, 1997.

[19] C.M. Dafermos, On the existence and asymptotic stability of solutions to the equations of
linear thermoelasticity Arch. Rational Mech. Anal. 29 (1968) pp. 241-271.

[20] G. Dagan, Analysis of Flow through a Heterogeneous Random Agquifier: 2. Unsteady flow in
confined formations, Water Res. Jour. 18 (1982), 1571-1585.

[21] G. Dagan, “Flow and Transport in Porous Formations”, Springer-Verlag, NY, 1989.

[22] W.A. Day, “Heat Conduction within Linear Thermoelasticity” Springer, New York, 1985.

[23] E. DiBenedetto and R.E. Showalter, Implicit degenerate evolution equations and applications,
SIAM J. Math. Anal. 12 (1981), 731-751.

[24] J. Douglas, Jr., M. Peszynska, and R. E. Showalter, “Single Phase Flow in Partially Fissured
Media”, Transport in Porous Media 28: 285-306, 1997.

[25] B.F. Esham and R.J. Weinacht, Singular perturbations and the coupled quasi-static approz-
imation in linear thermoelasticity, STAM J. Math. Anal. 26 (1994) pp. 1521 - 1536.

[26] A. Farina and L. Preziosi, Deformable porous media and composites manufacturing, in “Het-
erogeneous media, Model. Simul. Sci. Eng. Technol.”, pp. 321-410, Birkhuser, Boston, MA,
2000.

[27] G. Fichera, Uniqueness, existence and estimate of the solution in the dynamical problem of
thermodiffusion in an elastic solid, Archiwum Mechaniki Stosowanej 26 (1974), 903-920.



16 R.E. SHOWALTER

[28] W. Han and B.D. Reddy, Computational plasticity: the variational basis and numerical
analuysis, Comp. Mech. Adv., 2 (1995), 283-400.

[29] Ulrich Hornung (editor), “Homogenization and Porous Media”, Interdisciplinary Applied
Mathematics Series, vol. 6, Springer, New York, 1996.

[30] P. S. Huyakorn and G. F. Pinder, “Computational Methods in Subsurface Flow”, Academic
Press, New York, 1983.

[31] J. Huyghe and J. Janssen, Quadraphasic mechanics of swelling incompressible porous media,
Internat. J. Engrg. Sci. 35 (1997), 793-802.

[32] V.D. Kupradze, “Three-dimensional Problems of the Mathematical Theory of Elasticity and
Thermoelasticity”, North Holland, Amsterdam, 1979.

[33] W.M. Lai, J.S. Hou and V.C. Mow, A triphasic theory for the swelling and deformation
behaviors of articular cartilage, J. Biomech. Engrg. 113 (1991), 245-258.

[34] R.W. Lewis, Y. Sukirman, “Finite Element Modelling of Three-Phase Flow in Deforming
Saturated Oil Reservoirs”, Intl. J. for Num. and Anal. Meth. in Geomechanics, vol. 17,
577-598, 1993

[35] J.L. Lions, “Quelques Methods de Resolutions des Problems aux Limites Non Lineares”,
Dunod, Paris, 1969.

[36] J.K. Miller, “Fundamentals of Soil Behavior”, Wiley, NY, 1993.

[37] S. Minkoff, Charles M. Stone, J. Guadalupe Arguello, Steve Bryant, Joe Eaton, Malgorzata
Peszynska, and Mary Wheeler. “Staggered In Time Coupling of Reservoir Flow Simulation
and Geomechanical Deformation: Step 1 — One-Way Coupling.” Proceedings of the 1999
SPE Reservoir Simulation Symposium, Houston, TX., Feb. 14-17, 1999.

[38] M.A. Murad and John H. Cushman, Multiscale flow and deformation in hydrophilic swelling
porous media, Internat. J. Engrg. Sci. 34 (1996), 313-338.

[39] M.A. Murad, V. Thomee, and A.F.D. Loula, Asymptotic behavior of semidiscrete finite-
element approzimations of Biot’s consolidation problem, SIAM J. Numer. Anal. 33 (1996),
1065-1083.

[40] C. Olsen, D. Attatian, R. Jones, R. Hill, J. Sink, K. Sink, and A. Wechsler, The coronary
pressure flow determinedants of left ventricular compliance in dogs, Circulation Research 49
(1981), pp. 856-870.

[41] M. Peszynska and R.E. Showalter, A transport model with adsorption hysteresis, Differential
and Integral Equations, vol.11, 2 (March 1998), 327-340.

[42] L. Preziosi and A. Farina, Infiltration of a polymerizing resin in a deformable preform for
fiber reinforced composites, Applied and Industrial Mathematics, Venice-2, 1998, pp. 259—
271, Kluwer Acad. Publ., Dordrecht, 2000.

[43] J. R. Rice and M. P. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic
porous media with compressible constituents, Rev. Geophysics and Space Phy. 14 (1976),
227-241.

[44] A. Settari, F.M. Mourits, “Coupling of Geomechanics and Reservoir Simulation Models”,
Computer Meth. and Adv. in Geomechanics, Siriwardan, Zeeman (eds.), 1994, Balkema,
Rotterdam

[45] P. Shi and M. Shillor, Ezistence of a solution to the N dimensional problem of thermoelastic
contact, Comm. PDE 17 (1992) pp. 1597-1618.

[46] P. Shi and Yongzhi Xu, Decoupling of the quasistatic system of thermoelasticity on the unit
disk Jour. of Elasticity 31 (1993) pp. 209-218.

[47] R.E. Showalter, “Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations”, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1996

[48] R.E. Showalter, Diffusion in poro-elastic media, Jour. Math. Anal. Appl. 251 (2000), 310-
340.

[49] R.E. Showalter, Distributed Microstructure Models of Porous Media, International Series of
Numerical Mathematics, Vol. 114, Birkhduser Verlag Basel, 1993.



DEFORMING POROUS MEDIA 17

[50] R.E. Showalter, T. Little, and U. Hornung, Parabolic PDE with hysteresis, Control and
Cybernetics 25 (1996), 631-643.

[51] R.E. Showalter and B. Momken, Single-phase Flow in Composite Poro-elastic Media, Math-
ematical Methods in the Applied Sciences 25 (2002), 115-139.

[52] R.E. Showalter and Peter Shi, Plasticity models and nonlinear semigroups, Jour. Math. Anal.
Appl. 216 (1997), 218-245.

[53] R.E. Showalter and Ning Su, Partially saturated flow in a poroelastic medium, Distributed
and Continuous Dynamical Systems - Series B 1 (2001), 403-420.

[54] R.E. Showalter and Ning Su, Partially saturated flow in a composite poroelastic medium, in
preparation.

[55] R.E. Showalter and U. Stefanelli, Diffusion in poro-plastic media, in preparation.

[56] J. Spaan, Coronary diastolic pressure flow relation and zero flow pressure explained on the
basis of intramyocardial compliance, Circulation Research 56 (1985), pp. 293-309.

[57] S. Valliappan and N. Khalili-Naghadeh, ‘Flow through fissured porous media with deformable
matrix’, Int. J. Numerical Methods in Engineering, 29, 1079-1094 (1990).

[68] A. Visintin, “Differential models of hysteresis”, Springer, Berlin, 1995.

[59] J. E. Warren and P. J. Root, ‘The behavior of naturally fractured reservoirs’, Soc. Petr. Eng.
J., 3, 245-255 (1963).

[60] M.F. Wheeler, T. Arbogast, S. Bryant, J. Eaton, Q. Lu, M. Peszynska, and 1. Yotov, “A
parallel multiblock/multidomain approach for reservoir simulation,” 1999 SPE Reservoir
Simulation Symposium, Houston, February 1999 (SPE 51884).

[61] R.K. Wilson and E.C. Aifantis, On the theory of consolidation with double porosity, Int. J.
Engng. Sci. 20 (1982), 1009-1035.

[62] Xiangsheng Xu, The N-dimensional quasistatic problem of thermoelastic contact with Bar-
ber’s heat exchange conditions, Adv. Math. Sci. Appl. 6 (1996) pp. 559-587.

[63] O.C. Zienkiewicz, A.H.C. Chan, M. Pastor, B.A. Schrefler, T. Shiomi, “Computational Ge-
omechanics”, Wiley, Chichester, 1999.

[64] A. Zenisek, The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat.
29 (1984), 194-211.



18 R.E. SHOWALTER

DEPARTMENT OF MATHEMATICS AND TICAM, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN,
TX 78712, USA
E-mail address: show@math.utexas.edu



