PORO-PLASTIC FILTRATION COUPLED TO STOKES FLOW
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ABSTRACT. We report on the model development and mathematical analysis of the
exchange of fluid and stress between a Biot model of an elastic-plastic porous structure
saturated with a slightly compressible viscous fluid coupled to the Stokes flow in an ad-
jacent open channel. The coupled systems of partial differential equations and interface
conditions will be formulated in a mixed variational setting and resolved by nonlinear
semigroup methods.

1. INTRODUCTION

Visco-elastic and elastic-plastic behaviors of porous media are common, especially in soils,
and generally for materials of interest in geomechanics. Various approaches to include ap-
propriate constitutive equations have been developed, and many numerical codes include
plasticity models [14], [15], [27], [37], [48]. Another example arises from the irreversible
fluid content that corresponds to the plastic porosity of the porous medium, and these
examples illustrate the need for the inclusion of hysteresis in models of deforming porous
media. Such memory dependent phenomena as secondary viscosity and hysteresis effects
in models of flow and transport in (rigid) porous media have been studied by nonlinear
semigroup techniques as in [40], [47]. In recent work of [41], we have developed a very
general model for Darcy flow through a viscous-plastic medium in the form of the coupled
system of partial differential and functional equations

(1.1a) 2(c1p' + 6V -u') =V -k(Vp') = hy,
(1.1b) pripu' =V -o' +cVp' =1,
(1.1¢) o' =H(e(u")).

The system (1.1) is of Biot type [9], [10], [11] and consists of the diffusion equation for
the pressure, the conservation equation for momentum, and a constitutive relation for
the deformation response of the medium, respectively. The constitutive relation (1.1c)
involves the stress o' and the small strain tensor £(u'). The symmetric derivative of a
vector function v(z) is the tensor ;;(v) = $(d;v; + 9;v;).

The slow flow through an adjacent open channel, possibly a macropore, an isolated

cavity, or a connected fracture system, is described by the compressible Stokes system
[44], [36]

(1.2a) D (cp®) + V-V + copog - v’ =0,
(1.2b) 5 (p2v?) =V - 0* + Vp* = cappg p?,
(1.2¢) G?j = Ao0ije (V) kk + 226 (v?)y -
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In the limiting case of an incompressible fluid, we have co = 0 and classical Stokes flow,
V. -vi=0, 2 (pav?) — AV + Vp* = 0.

The Biot system (1.1) includes a very extensive variety of models. Moreover, the theory
developed in [41] permits highly degenerate situations in which some (or even all) of the
parameters ci, p1, and k may vanish! Specifically, we include any combination of the
quast-static case, p; = 0, the incompressible case, ¢; = 0, the uncoupled case, cg = 0, and
even the impermeable case, k = 0. The porous solid is a very general rheological material
made up of the parallel combination of elementary components of various types, elastic,
viscous, and plastic, with combinations of kinematic and isotropic hardening. Such a
construction requires the introduction of internal variables [19], [42], [47].

Our objective is to formulate a model of a composite poro-mechanical system which
accurately characterizes the fluid exchange and stress balance between the elastic-plastic
porous medium and a contiguous fluid-filled chamber, and to show that this model leads
to a mathematically well-posed problem which is amenable to analysis and computation.
The interface coupling conditions include the continuity of the normal fluid flux and of
stress. Two additional constitutive relations concern the dependence of the Darcy flux
at the interface on the pressure increment and the effect of the tangential component of
stress on the velocity increment at the interface. The former is a classical Robin-type
condition, and the latter is the slip condition of Beavers-Joseph-Saffman.

2. THE BIOT-STOKES SYSTEM

Suppose that disjoint regions €; and €5 in IR? share the common interface, I'1o = 094 N
0€)5. The first region €2, is the porous matriz structure, and the second region €2y is
the adjacent macro-void system. Denote by n the unit normal vector on the boundaries,
directed out of €2; and into €2y. The derivative with respect to time will be denoted by a
superscript dot, so v!(z, t) = u'(z,t) denotes the velocity corresponding to a displacement
ul(z,t) of the porous structure at x € Q;. Let v2(z,t) be the velocity of the fluid at
x € Q. The fluid pressure in Q; is p'(z,t) and in the adjacent channel system ) is
P*(z, t).

The mechanical behavior of the porous solid is determined by classical small-strain
elasticity. Boldface letters indicate vectors in IR? and Greek letters are used for symmetric
second-order tensors. Repeated indices are summed, so the scalar product of two vectors
is v - w = v;w;, and that of two second-order tensors is o : 7 = 0y;7;;. Let n = {n;} be
the unit normal vector on a surface. For a vector w, we denote the normal projection
w, = w - n and the tangential component wr = w — w,n. Similar notation is used for
tensors.

2.1. The System

We shall write the constitutive equations together with the conservation equations for
mass and momentum balance as a system of first-order partial differential equations in
each of the two regions. The constitutive laws are written in the differential form M(&!)+
L(c') 3 e(v?!) in Q; for the stress o' corresponding to the strain rate ¢(v') in the porous
structure and oz-zj = Aa0ije (V) kk + 2126 (v?);; in Qy for the viscous stress corresponding
to the strain rate e(v?) of the Newtonian fluid. For a purely elastic structure, L = 0
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and M is the compliance tensor. For plasticity models, I(+) is a variational inequality.
Note that o' — ¢y p' § is the total stress due to deformation and pore pressure p' within
the matrix, and 0% — p? § is the combined viscous and pressure stress of the fluid. Here
both p' and p? are the thermodynamic pressure of the barotropic fluid in the respective
regions. The Biot-Stokes system takes the form

(2.1a) apt+V-q+cV-vi=h,

(2.1b) Q(a) + Vp' =0,

(2.1¢) oV =V (V-vh) = V.ol + ¢ Vp' =1,
(2.1d) M(6') + L(o') 3 e(v') in Q;, and
(2.1e) cop? + V- v+ copog - v: = ho,
(2.1f) v =V -0+ Vp? —copap’g =1,
(2.1g) C?0% —e(v?) =01in Q,.

The first (2.1a) is the storeage equation for the fluid mass conservation in the pores of the
matrix in which the fluz q is the relative velocity of the fluid within the porous structure
given by Darcy’s law. This is written in the form (2.1b) of a force balance in which the
flow resistance tensor Q is the inverse of the conductivity tensor k;;. The third set of
equations (2.1c) is the standard Navier system for the conservation of momentum of the
matrix structure, and p* > 0 arises from secondary consolidation effects. The constitu-
tive relation (2.1d) is the differential form of the elastic-plastic stress-strain relationship.
These first four equations are equivalent to the Biot system (1.1), and they can be gen-
eralized to include quasilinear diffusion Q(-) and nonlinear dissipation p*(-) in addition
to the highly nonlinear constitutive relation (2.1d).

The last three equations are just the compressible Stokes system (1.2) for pressure
p?(z,t) and velocity v?(z,t) of the fluid. The equation (2.1e) accounts for the fluid mass
conservation in the channel, and (2.1f) is the momentum conservation equation. The
gravitational force g contributes to both of these. The Newtonian fluid is described by
the constitutive relation (2.1g) in which the tensor C? is the inverse to the viscosity tensor.

2.2. Boundary and Interface Conditions

We choose the boundary conditions on 0€2; U0S2s—1'15 in a classical simple form, since they
play no essential role here. On the exterior boundary of the porous medium, 0$2; — I'¢2,
we shall impose drained conditions p; = 0 on fluid pressure and the clamped condition
v; = 0 on velocity of the structure. On the exterior boundary of the free fluid, 0€2y —I'15,
we shall impose the no-slip condition vo = 0 on fluid velocity. More general conditions
can be given as in [41].

In order to complete a well-posed problem, additional interface conditions must be im-
posed across the interior boundary I';5. Let’s begin by reviewing the interface conditions
that have been used previously to couple various models of fluid and solid composites.
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2.2.1. Fluid-Solid Contact

The natural transmission conditions at the interface of a free fluid and an impervious solid
consist of the continuity of displacement and of stress [35]. The effective flow through a
rigid micro-porous and permeable matrix is described by the Darcy law, ¢; = —kijajpl,
where q is the filtration velocity or flux of fluid driven by a pressure gradient, and £;; is
the conductivity. In fact, Darcy’s law can be realized as the upscaled limit by averaging
or homogenization of a fine-scale periodic array of a rigid solid and intertwined fluid.
See [43], [1], [20]. Similar results are obtained when the solid is permitted to be elastic,
and then various scalings of the viscosity lead to a viscous solid or to the Biot model of
poroelasticity (1.1). See [6], [34], [36], [13], [46], [7], [17], [5], [45].

2.2.2. Fluid—Porous Medium

The description of a free fluid in contact with a rigid but porous matrix requires a means
to couple the fluid flow to the upscaled Darcy filtration. Since a Stokes system is used for
the free fluid, we have two distinct scales of hydrodynamics, and these are represented
by two completely different systems of partial differential equations. Fluid conservation
is a natural requirement at the interface, and other classically assumed conditions such
as continuity of pressure or vanishing tangential velocity of the viscous fluid have been
investigated [16], [25], but these issues have been controversial. See the discussion on p.
157 of [36]. In fact, one can even question the [ocation of the interface, since the porous
medium itself is already a mixture of fluid and solid. Moreover, it was reported in [8]
that fluid in contact with a porous medium flows faster along the interface than a fluid in
contact with a solid surface: there is a substantial slip of the fluid at the interface with a
porous medium. It was proposed that the normal derivative of the tangential component
of fluid velocity vy satisfy

amvr = J=(vr —ar)
where K is the permeability of the porous medium, and 7 is the slip rate coefficient. This
condition was developed further by [32] and [23], and a substantial rigorous analysis of
such interface conditions was given by [21], [22]. See [30], [26] for excellent discussions,

[33], [18], [24], [2], [3] for numerical work, [31] for dependence on the slip parameter, and
[4] for homogenization results on related problems.

2.2.3. Fluid—FElastic Porous Medium

Any model of free fluid in contact with a deformable and porous medium contains the
upscaled filtration velocity in addition to the displacement and stress variations of the
porous matrix. These must be coupled to the Stokes flow, so all of the previous issues
are present in the interface conditions. See [28], [29], [39].

2.2.4. Fluid-FElastic-Plastic Porous Medium

We begin with the mass-conservation requirement that the normal fluid flux be continuous
across the interface. For this purpose, we introduce the parameter 5 which represents the
surface fraction of the interface on which the diffusion paths of the structure are sealed.
The remaining fraction 1 — (3 is the contact surface along I'15, where the diffusion paths
of the porous medium are exposed to the fluid in the open channel, and so the motion of
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the structure contributes to the interfacial fluid mass flux. Thus, the solution is required
to satisfy the admissability constraint

(2.2a) (co(1=pB)v'+q)-n=v?-n

for the conservation of fluid mass across the interface. We shall assume that the Darcy
flow across I'io is driven by the difference between the total normal stress of the fluid
and the pressure internal to the porous medium according to

(2.2b) o2 —p*+p'=aq-n.

The constant o > 0 is the fluid entry resistance. The conservation of momentum requires
that the total stress of the porous medium is balanced by the total stress of the fluid.
For the normal component this means

(2.2c) 0 = cop' = co(1 = B)(on = p?)
and for the tangential component we have
(2.2d) 0y = 05

Finally, this common tangential stress is assumed to be proportional to the slip rate
according to the Beavers-Joseph-Saffman condition

(2.2¢) 02 = WO(VE —vi).

We have shown that the interface conditions (2.2) suffice precisely to couple the Biot
system (1.1) in Q; to the Stokes system (1.2) in .

3. THE INITIAL-VALUE PROBLEM
The system (2.1) with (2.2) can be written in the form

(3.1a) v(t) e V: % (Av(t)) + Bv(t) =f(t) in H, ¢t > 0,

in appropriate function spaces V and H where the linear operator A : H — H' is degen-
erate, symmetric and nonnegative, and the nonlinear B : V — V' is monotone. These
operators are defined below. The evolution equation (3.1a) is to be solved subject to the
inttial condition

(3.1b) Av(0) = Avy .

The equation (3.1a) is an example of an implicit evolution equation with degenerate
operators as coefficients, sometimes known as a degenerate Sobolev equation; see [38].

3.1. The mized formulation

Here we consider the system (2.1), (2.2), but re-order the variables according to their
role in the physics of the model, not in the geometry of the problem. Thus, we separate
the variables into two spaces. The first space X consists of admissable velocities, X =
{la,vi,v2] : (co(l — B)v! +q) -n = v?- n}, and the second space Y contains the
generalized stresses, Y = {[p1, 01, p2, 02]}. We define the operators

A: XX B: XY C: Y->Y
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by means of the matrix operators

A= 0 VeV Ovr =YV Onr |,
0 VO VvV Ovr
d:e cod:e 0
0 —€ 0
B= 0 d:e+copog |’

0
0 0
C:diag(oa ]L()a 0, Cz)
Dl = dlag(oa P1, p2)a D2 = diag(cla Ma Co, O)a

—&

where v, and yr denote normal and tangential trace on the interface. Then the system
(2.1), (2.2) takes the form

Dix+Ax - By =f,
Dyy+ Bx+Cy =g,
for the unknowns x = [q, vi,vo| € X, ¥ = [p1,01,2,02] € Y. Now set

_(Dy 0 (A -B
=(0n) =G )
to get the system into the form (3.1a) on V=X x Y.

3.2. Remarks

The means by which we establish the solvability of the system will depend critically
on how much degeneracy occurs in the operators. For example, in the least degener-
ate case in which all the constants ¢y, p1, ¢, po are strictly positive, the resolution is
straightformward. In the mathematically more interesting and practically more relevant
situations, some of these coefficients will vanish. In many of these cases, we can eliminate
appropriate variables, thereby obtaining elliptic terms in the system, and then solve the
reduced higher order system.

This mixed formulation requires a closed range condition on the operator B, and it
provides a natural and well established approach to the numerical approximation of the
problem; see [12]. In addition, the analysis of this formulation provides a means to
establish the relation with the singular limits such as the incompressible case ¢, = 0 of
the Stokes flow and the quasistatic case p; = 0 of consolidation processes. These issues
will be developed for nonlinear extensions of these models in forthcoming works.
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