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1. I~VTR~DUCTI~N 

Let A be an unbounded linear operator with dense domain D(A) in a 
complex Hilbert space H, and consider the problem of finding a solution of 
the evolution equation 

u’(t) + Au(t) = 0, t E (0, T) (14 

satisfying the prescribed final-value, u(T) = f. We assume A is maximal 
accretive, so the problem is generally not well-posed. 

Assume in addition that A2 is accretive. We shall demonstrate that there 
is at most one solution of this problem, and we give a constructive quasi- 
reversibility method of constructing solutions of (1.1) which approximately 
satisfy the final condition. In particular, one lets 01 > 0 and solves backward 
the “reversible” approximation to (1.1) given by 

w’(t) + aAd(t) + Av(t) = 0, (14 

with o(T) = f. Then w(O) is used as the initial value for a solution U, of 
(1.1). We prove below that lim ar+0 Us = f for any f E H and the method 
is stable in the sense that )/ u,( Z’)lj < 11 f/I for all 01 > 0. If there actually exists a 
solution u of the final value problem, then as 01-+ 0, the approximations u, 
and their derivatives u:~) converge uniformly on compact subsets of (0, T] to u 
and its derivative, u(“), respectively. Finally, we obtain estimates on the 
degree of approximation of the solution u by the approximations uU , both in 
the norm of H and in stronger norms determined by powers of A. 

The general method of quasireversibility was introduced by Lattes and 
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Lions [13] for the solution of non-well-posed problems. They approximated 
(1.1) by the equation 

w’(t) + Aw(t) - aA2w(t) = 0, (1.3) 

and assumed A is self-adjoint and positive, a condition more restrictive than 
ours. As before, (1.3) is solved backwards subject to the final condition 
w(T) = f. Then w(0) is the initial condition for a solution w, of (1.1). The 
authors asked only that wM(T) approximate f  but did not consider wJt) for 

t < T. When the inverse of A is compact, an elementary computation shows 

that II 47 -fll G II ~~0”) -fll , so approximation of (1 .l) by (1.2) is at 
least as good as the corresponding approximation by (1.3) [7, 151. 

The idea of approximating (1 .I) by (1.2) is due to Yosida and is the basis 

for his proof of the generation theorem for semigroups of operators [19]. 
When A is a realization of a partial differential operator, (1.2) is a pseudo- 
parabolic or Sobolev partial differential equation [16]. Such equations arise 
from certain models of fluid flow in fissured material [ 11, heat conduction [2], 

shear in second order fluids [3, IO], consolidation of clay [18], and others [6] 
in which the coefficient 01 has the dimensions of viscosity. This writer and 
Ting [17] pointed out that Yosida’s proof of the generation theorem shows 

that the parabolic equation (1.1) can be approximated by the pseudo- 
parabolic (1.2). Such approximations have also been useful in nonlinear 
problems, e.g. [4, 121, and may be viewed as a method of “vanishing 

viscosity.” Hence, we have a motivation from the physical models above to 
use (1.2). 

The plan of the paper is as follows. In Section 2 we review the basic 
results on the generation of semigroups of operators and their relation to the 
evolution equation (1.1). The method of quasireversibility suggests the con- 

struction in Section 3 of a special class of semigroups. We characterize when 
these are contractions in terms of the operators A and A2. These contraction 
semigroups are shown to converge to the identity, in an appropriate sense, 
and this leads to the major results of the paper in Section 4. There we show 
that our method converges if and only if there exists a solution. Uniqueness 
of a solution of the final value problem is verified, and we give estimates on 
the convergence of our approximations and their derivatives to a solution and 
its corresponding derivatives. 

The results we give are intentionally far from “best possible” in any sense. 
Rather, we have restricted our attention to Hilbert space (rather than, e.g. 
reflexive Banach space), and to the simplest evolution equation (1.1) which is 
irreversible (rather than, e.g. the situation in [12].) We also choose to give the 
elementary proofs available rather than to obtain the corresponding results 
from well-known theorems in the literature. (For example, certain results of 
Sections 3 and 4 can be obtained from standard results on the convergence of 
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semigroups.) However, these restrictions permit a self-contained and elemen- 
tary presentation of results which cover most interesting applications. 

2. GENERATION OF SEMIGROUPS 

We first recall the Hille-Yosida theorem. Let 8(H) denote the set of 
continuous linear operators on H. By a “semigroup” on H we mean a function 
S: [0, co) + Z(H) such that S(t + s) = S(t) S(s) for all t, s 3 0, S(0) == I, 
and S(.) x: [0, co) --L H is continuous for each x E H. S is a “contraction 
semigroup” on H if, in addition, 1) S(t)11 < I for each t 3 0. The (infinitesimal) 
“generator” of the semigroup S is the operator B defined by 

Bx = lj+y t-‘(S(t) x - x), 

the domain being the set of all x for which the limit exists. 

THEOREM [9, 191. The operator B is the generator of a contraction semi- 

group if and only if B is closed, densely dejined, each A > 0 is in the resolvent 
set of B, and )I h(h - B)-l 1) < 1 for all h > 0. 

COROLLARY. The operator -A is the generator of a contraction semigroup ;f 

and only if for every a > 0 the operator Jm = (I + oiA)-l is a contraction in 

-W% 

The condition on A in this corollary easily implies that Re(Ax, x)~ 3 0 
for all x E D(A). Such operators are “accretive,” and we call A “m-accretive” 
if -A generates a contraction semigroup [ 1 I]. 

Since it motivates our major results of the next section, we outline Yosida’s 
elegant proof of the corollary above. The operator A is m-accretive, so we 
can define Jol as above and A, = A Jn for each 01 > 0. From the identity 

A, = &(I - JW) (2.1) 

and the Ja being contractions, it follows that each A, is accretive. But 
A, E Z?(H) so we can define a “group” of linear operators by 

S,(t) = exp(-tA,), --co<t<co, 

where we use the power series to define the exponential function. Hence, each 
A, is m-accretive and S,(t) is a contraction if t > 0. On D(A) we have 
A, = J,A; this identity and (2.1) give, respectively, 

II Aax II G II Ax II 9 II Jax - x II < 01 II Ax II > x E D(A). (2.2) 
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From (2.1) and (2.2) we have 

II 42 - Ax II G 01 II PX II > x E D(AZ), (2.3) 

so J= approximates the identity and A, approximates A on D(A) for small (Y. 
These facts and the uniform boundedness of {SJt): t 3 0, CY > 0} are used to 
demonstrate the existence of the strong limit S(t) x = lim,,, S,(t) X, 
x E H. This limit is the desired semigroup generated by A. 

Our interest in the semigroup S(t) arises from the fact that for any 5 E D(A), 
the function defined by u(t) = S(t) 5 ’ d’ff IS 1 erentiable and satisfies (1.1) for 
every t > 0. The special class of semigroups called “holomorphic” and 
described below have the property that S(t) maps all of H into the domain of 
every power of A for each t > 0, so the u(t) defined above is a solution of (1.1) 
for every 5 E H. 

An unbounded operator A on H is called “sectorial” with semiangle 0 
if all of the complex numbers (Ax, x), x E D(A), belong to the sector 
{z: 1 arg(x)l < e}. Thus, A is accretive if it is sectorial with semiangle 7r/2. 
If A is m-accretive and sectorial, we call it “m-sectorial.” 

THEOREM [ll]. If A is m-sectorial with semiangle 8, where 0 < B < 712, 
then S is a holomorphic semigroup. For each t > 0 and x E H, S(t) x E D(A) 
and AS(t) E P(H) with AS(t) ,< M/t. The identity S(t) = S(t/m)m shows 
that S(t) maps H into D(Am) for t > 0 and integer m > 1, and also we hawe 

A”S(t) < (M/t)“. (2.4) 

There is an intimate connection between solutions of (1.1) and the semi- 
group S generated by -A. 

DEFINITION. A solution of (1.1) on the interval [a, b] is a 

u E C(P, 4, H) n CW, 4, HI 

such that for all t E (a, b), u(t) E D(A) and (1.1) holds. 
If A is accretive, then for any solution u of (1.1) on [a, b] we have 

(d/dt) 11 u(t)l12 = 2Re(u’(t), u(t)) = -2Re(Au(t), u(t)) < 0 

for t E (a, b), so II u(t)// < I/ u(a)/1 . Applying this to the difference of two 
solutions shows that they are uniquely determined by and depend continu- 
ously on u(a). Hence, if for each 5 E D(A) there is a solution of (1.1) on [a, b] 
with u(a) = 5, then there is for each such 5 a unique solution u on [0, co) 
with u(O) = 5. Thus, by defining S(t) 5 = u(t), we obtain linear maps S(t) of 
D(A) into itself. If D(A) is dense in H, these can be extended to obtain the 
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contraction semigroup on H generated by -A. Conversely, if A is m-accre- 
tive, the solution of (1.1) on [a, b] with ~(a) = [ is given by u(t) = S(t - a) [ 
for each 4 E D(A). 

Let A be m-accretive. If u is a solution of (1.1) on [a, b] then for each 
t E (a, b] we have (d/ds) (S(t - s) U(S)) = 0 for s E (a, t), hence 

u(t) = S(t - u) u(u). 

Since u is differentiable at t exactly when u(t) E D(A), we see that u is a solution 
of (1 .l) on [a, b] if and only if u(t) = S(t - a) ZJ(U) for all t E [a, b], and 
u(t) E L)(A) for all t E (a, b). This suggests the following. 

DEFINITION. A weak solution of (1.1) on [a, b] is a function of the form 
S(t - a) ( for some 5 E H. 

It follows easily that there exists a weak solution II of (1.1) on [T - 6, T] 
taking the final value U(T) = f E H, where 0 < 6, if and only if f = S(S) 8 
for some 5‘ E H. Also, if -A generates a holomorphic semigroup, then the 
notions of solution and weak solution coincide. 

3. THE QR-SEMIGROUP 

Let A be m-accretive and consider the final-value problem for (1. I). From 
our remarks at the end of Section 2, it follows that we should find an initial 
vector 5 such that S(T) [ = f. S ince the operators S,(t) form a group (and 
hence are defined for t < 0), and since they approximate the semigroup S(t) 
at those t > 0 when a: > 0 is small, a natural candidate for an initial condition 
for which the solution to (1.1) arrives close to the final value f is the vector 
S,(- T) f. The corresponding solution is given by 

xv(t) = S(t) Sd- T)f> t E [O, T]. (3.1) 

We want to show (at least) that lim,,, U,(T) = f, so we are led to examine 
the operators 

E,(t) = S(t) S&t), 01 > 0, t 3 0. (3.2) 

LEMMA 1. For each 01 > 0, E, is a semigroup on H and -(A - A,) is the 
generator. 

Proof. Since S(t) and &(-t) commute, E, is clearly a semigroup on H, 
and we denote its generator by B. Differentiation of E,(t) x for x E D(A) 
shows that x E D(B) and B is an extension of A, - A. But S(t) = E,(t) S,,(t) 
shows likewise that D(B) = D(A), so B = A, - A. 
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DEFINITION. For each 01 > 0, E, is a “QR-semigroup” for the m-accretive 
operator A. The collection of QR-semigroups is “stable” if each is a contrac- 
tion semigroup. 

Since the stability of the QR-semigroups is essential in the development 
below, we shall characterize it in terms of A. For any (Y > 0, Lemma 1 
implies that E, is a contraction exactly when A - A, is accretive. But from 
(2.1), A - A, = &a], on D(A), so A - A, is accretive if and only if 
Re(A2x, x + &x) 3 0 for all x E D(A2). This gives the following. 

LEMMA 2. The QR-semigroups are stable if and only if A2 is accretive. 

We examine the condition in Lemma 2. Suppose first that B E L?(H) is 
accretive, hence m-accretive. The polar decomposition B = X + iY expresses 
B in terms of self-adjoint bounded operators, and the real part, X, is non- 
negative. The real part of B2 is given by X2 - Y2, and this is nonnegative 
exactly when -X < 1 Y 1 < X. Thus, B2 is accretive if and only if B is 
sectorial with semiangle n/4. 

Let A be an m-accretive (possibly unbounded) operator on H. For each 
E > 0, (c + A)-l E P(H) and is accretive. Also, 

Re((c + A)-2 x, x) = .z2 11 z II2 + E Re(Ax, z) + Re(A2x, z) 

where z = (6 + A)e2 x E D(A2), so it follows by applying the preceding 
result with B = (c + A)-l that A2 is accretive if and only if (E + A)-l is 
sectorial with semiangle n/4 for every E > 0. An easy computation shows that 
this is equivalent to A being sectorial with semiangle 7r/4, so we have the 
following result. 

LEMMA 3. The m-accretive operator A is sectorial with semiangle 9rr/4 if and 
only if A2 is accretive. 

Consider the QR-semigroups {E,: 01 > 0). Let x E D(A) and t > 0. For 
a, ,8 > 0 it follows by the fundamental theorem of calculus that 

E,(t) x - ED(t) x = s,’ $ {E,(s) Ee(t - s) x> ds 

= 
s 

t E,(s) E,(t - s) (Ap - A,x} ds. 
0 

If the QR-semigroups are stable, then we obtain 

II Em(t) x - E,(t) x II < t II 4~ - &ix II , 

so lim,,, E,(t) x exists for all x E D(A). Since the operators {E,(t), (Y > 0} 
are uniformly bounded and D(A) is d ense in H, the limit exists for all x E H 
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and we denote it by E(t) X. The estimate shows that the convergence of 
E,(t) x to E(t) x is uniform on bounded intervals, so we may take the limit 
in the identity 

E,(t) x = x - s t E,(s) (Ax - A,x) ds, 
0 

to obtain E(t) x = x for x E D(A). But E(t) is a contraction and D(A) is 

dense, so E(t) = I for all t >, 0. Thus, we have proved the following funda- 
mental result. 

THEOREM 1. Let A be an m-accretive in H and de$ne the QR-semigroups, 
E, , by (3.2). Then the QR-semigroups are stable if and only if A is sectorial with 
semiangle n/4. This is equivalent to A2 being accretive, and in that case we have 

lim,,, E,(t) x = x for each x E H, uniformly on bounded intervals, and the 
following estimates hold: 

II E,(t) x - x II < t II Ax - 42 II , x E D(A); 

II K(t) x - x II G ta II A2x II 7 x E D(A2). 

Remarks. Since the semigroup generated by A is holomorphic, the final 
value problem is well-posed only if A is bounded [8]. Also, the condition in 

Theorem 1 on A is satisfied if A = cB, where B is symmetric and c is complex 
with 1 arg(c)l < n/4. 

4. EXISTENCE, UNIQUENESS, AND APPROXIMATION 

Hereafter assume A is an m-sectorial operator with semiangle 7r/4, so the 
results of Theorem 1 apply. We first show that there is at most one solution 

of the final value problem for (1.1) on [0, T]. This is the problem of backward 
uniqueness for (1.1) and by linearity is equivalent to showing that the kernel 
of S(T) consists only of the zero vector. An easy computation shows that the 
kernel of S(T) is the orthogonal complement of the range of the adjoint, 
S*(T), so we need to show that the range of S*(T) is dense in H. 

The adjoint A* of the m-accretive A is also m-accretive, and -A* is the 
generator of the contraction semigroup {S*(t): t > 0} [19]. Since S(t) 
commutes with 5’,(-t), we have Em*(t) = S*(t) S,*(-t) for 01 > 0 and 
t > 0, so Lemma 1 shows that E,* is generated by -(A* - A,*). But the 
adjoint of a bounded operator has the same norm, and each Em is a contraction 
semigroup, so E,* is a contraction semigroup for each 01 > 0. Theorem 1 

40914713-9 
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then shows that for every x E H, S*(T) &*(- T) x + x as 01-+ 0, so the 
range of S*(T) is dense in H. 

We noted in Section 2 that a given f E H is the final value of a solution of 
(1.1) on [T - 6, T], where 0 < 6 < T, if and only if f = S(S) 8 for some 
5 E H. By our uniqueness result above, 5 is uniquely determined by f. 
Moreover, Theorem 1 shows that t = lim,,, E,(S) 5 = lim,, S,( -S) f. 
Conversely, if lim,,, S&S) f = [, th en, since each S,(S) is a contraction, 
we have lim,,, S,(S) S,(--6) f = S(S) E. But Theorem 1 implies that this 
limit is just f, so we have proved the following. 

THEOREM 2. Let A be m-sectorial with semiangle CT/~. For each f E H, 
there is at most one solution u of (1.1) on [0, T] with u(T) = f. If 0 < 6 < T, 

there is a soktion u of (1.1) on [T - 6, T] with u(T) = f  if and only if 
lim,,, S,( -S) f  exists in H, and then this limit is the vector u( T - 6). 

Let u be the solution of (1.1) on [T - 6, T] with u(T) = f .  Then we have 
the representations 

u(t) = s(t + 6 - T) .$, t>T-S, 

where t is determined by f  = S(S) 6, and 

u,(t) = s(t) Sm(--)f = s(t + 6 - T) E,(T) 5, t>T-S, a > 0. 

Thus, we obtain 

u,(t) - u(t) = s(t + 6 - T) P,(T) 5 - 0, 01 > 0, t>T-S. (4.1) 

Since S is a contraction semigroup, (4.1) shows that uor + u, uniformly on 
[T - 6, T], as 01+ 0. Furthermore, the semigroup S is holomorphic on 
(0, cc), so we can differentiate (4.1) to get 

utm)( a T) - utm)(t) = (-A)” s(t + 6 - T) (I&(T) E - 51, 

01 > 0, t>T--6, m 3 0. 

The estimate (2.4) then gives 

/I u?)(t) - u(*)(t)11 < [W(t + 6 - T)]” I/ E,(T) 4 - [II , 

CY > 0, t>T-S, m > 0. 
(4.2) 

We can also estimate the dependence of u, - u on (Y. If 4 satisfies a 
“smoothness” assumption, [E D(A2), then Theorem 1 shows that the last 
term in (4.1) is bounded by ToIA2f. But such an assumption on the initial 
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vector is unnecessary, since the semigroup S is holomorphic. In particular, 
if 0 < z < 6, then S(e) [ E D(P) and we can write (4.1) in the form 

u,(t) - 44 = W + 6 - T - 6) {G(T) Sk) t - S(e) 51, t>T--6+E. 

Differentiation of this identity and (2.4) give the estimate 

11 uLm”‘(t) - t@(t) 11 < [M/(t + 6 - T - ~)]~Tol 11 A2S (e)[ I/, 

t>T--6+e, O<E<S, 01 > 0, (4.3) 

so we have proved the following result. 

THEOREM 3. Let A be m-sectorial with semiangle n/4 and f = S(S) 5 
for some 6 E [0, T]. Let u be the solution of (1.1) on [T - 6, T] with u(T) = f 
and let u, be the solution of (1.1) on [0, T] dejned by (3.1). Then the estimates 
(4.2) and (4.3) hoZd. 

Remark. By restricting consideration to solutions which satisfy a 
prescribed global bound, one can use the logarithmic convexity of solutions 
to (1.1) to “stabilize” the final value problem [S, 141. 

Finally, we note that the estimates above hold in the stronger norms induced 
by powers of A. For each integer p > 0, (I + A)* is a bijection of D(Ap) onto 
H and the norm 1) x jjB = l/(1 + A)9 x j/ makes D(Ap) a Hilbert space. We 
have 11 x IID < jl x /IQ for all x E D(A*) C D(Ap), where 0 <p < q. Also, A 
commutes with each A, , S,(t), and S(t), so (4.3) holds with the H-norm 
replaced by the p-norm. Recall that S(t) maps H into every D(Ap), p ,? 0, 
t > 0, since S is holomorphic. 

COROLLARY. In the situation of Theorem 3, the estimate (4.3) holds with the 
H-norm replaced by the stronger p-norm for every integer p 3 0. 

This result is particularly useful when A is a realization of a regular 
elliptic operator of order 2q on H = L2(G), where G is an open subset of 
Euclidean n-space with smooth boundary. For then Sobolev’s lemma shows 
that D(Ap) is contained in the space of functions uniformly continuous on 
G, where p is chosen with 2qp as large as the integer part of n/2, and (4.3) 
is then a uniform estimate over the region G. A similar result holds for 
spatial derivatives of the solution. 
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