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Abstract. Laminar flow through through fissured or otherwise highly inhomoge-
neous media leads to very singular initial-boundary-value problems for equations
with rapidly oscillating coefficients. The limiting case (by homogenization) is a con-
tinuous distribution of model cells which represent a valid approximation of the finite
(singular) case, and we survey some recent results on the theory of such systems.
This is developed as an application of continuous direct sums of Banach spaces which
arise rather naturally as the energy or state spaces for the corresponding (station-
ary) variational or (temporal) dynamic problems. We discuss the basic models for a
totally fissured medium, the extension to include secondary flux in partially fissured
media, and the classical model systems which are realized as limiting cases of the
microstructure models.

1. Introduction.

Fractured or fissured porous media are commonly modelled as a composite material
consisting of two components for which the internal flow is described by a pair of
partial differential equations, one acting in each of the components, and a coupling
that describes the interface between these components. For any region which consists
of two finely interspersed materials, one can consider averaged properties of both
materials as existing at every point in the region. and this leads to various classes
of double porosity models. The classical example of this approach is the parabolic
system

(1)

∂

∂t
(au1)− ~∇ · (A~∇u1) +

1
δ
(u1 − u2) = f1

∂

∂t
(bu2)− ~∇ · (B~∇u2) +

1
δ
(u2 − u1) = f2 .

discussed in [7] for which u1 represents the density of fluid in the first material and u2

the density in the second. Similarly a(x) and A(x) are porosity and permeability of
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the first material, respectively, while b(x) and B(x) are corresponding properties of
the second material. The third term is an attempt to quantify the exchange of fluid
between the two components. (See [41] for a corresponding heat conduction model.)
Since the two components are treated symmetrically, such a double porosity model
is said to be of parallel flow type. This symmetric treatment of the two components
is a real limitation of these classical double porosity models. For a fractured medium
such a representation is particularly inappropriate, since the porous and permeable
cells within the structure have flow properties radically different from those of the
surrounding highly developed system of fissures. Moreover the geometry of the indi-
vidual cells and the corresponding interface is lost in the averaging process leading
to such models. Another class of double porosity models consists of the distributed
microstructure models. At each point in the region there is given a representative
model cell, the flow within each such local cell is described by an initial-boundary-
value problem, and the boundary values on the cells are coupled to a single global
initial-boundary-value problem which describes the global flow in the region. Thus
we have a continuum of partial differential equations to describe the local flow on
the micro-scale, and these are coupled to a single partial differential equation for the
macro-scale flow. This concept occurred in a heat conduction problem in [34] and
has arisen in a variety of applications which we mention below.

We shall illustrate these two classes of double porosity models in each of two
models of fissured media. We use both types to describe first the totally fissured case
in which the cells are individually and completely isolated from each other by the
fissure system. In these models the cells act as storage sites only, and there is no
direct diffusion from cell to cell, as they are connected only indirectly through the
surrounding fissure system. Then we introduce corresponding models for the partially
fissured case in which there is some fluid flow induced through the cell structure by
the pressure gradient in the fissure system. This flow through the cells contributes
an additional component to the velocity field in the fissure system which we call the
secondary flux . Finally, we show the form of the functional differential equations that
arise for the global flow when the local problems are eliminated from the system by
Green’s operator representations.

2. Totally Fissured Media.

A fractured medium consists of an ensemble of small porous and permeable cells
which are surrounded by a highly developed system of fractures. The bulk of the
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flow occurs in the highly permeable fracture system, and most of the storage of fluid
is in the system of cells which accounts for almost all of the total volume. One
approach to constructing a model of such a medium is to regard the fissure system
as the first component and the cell system as the second component of a parallel
flow model obtained from (1) by adjusting the coefficients appropriately. In order to
specialize the system (1) to a totally fissured medium in which the individual cells are
isolated ¿from each other and no direct cell-to-cell flow is possible, one sets B = 0.
The resulting system of parabolic-ordinary type differential equations

∂

∂t
(au1)− ~∇ · (A~∇u1) +

1
δ
(u1 − u2) = f(2.a)

∂

∂t
(bu2) +

1
δ
(u2 − u1) = 0(2.b)

is called the first-order kinetic model, since the cell storage is regarded as an added
kinetic storage perturbation of the global fracture system. See [1], [13], [51], [11],
[33], [21], [14], [9], [17], [32], [46] for applications and mathematical developments of
such models.

Two essential limitations of the parallel-flow models are the suppression of the
geometry of the cells and their corresponding interfaces on which the coupling oc-
curs and the lack of any distinction between the space and time scales of the two
components of the medium. The introduction of distributed microstructure models
represents an attempt to recognize the geometry and the multiple scales in the prob-
lem as well as to better quantify the exchange of fluid across the intricate interface
between the components. The global flow in the fracture system is described in the
macro-scale x by

(3.a)
∂

∂t

(
a(x)u(x, t)

)
− ~∇ ·A(x)~∇u + q(x, t) = f(x, t) , x ∈ Ω ,

where q(x, t) is the exchange term representing the flow into the cell Ωx. The flow
within the local cell Ωx is described in the micro-scale variable y by

(3.b)
∂

∂t

(
b(x, y)U(x, y, t)

)
− ~∇y ·B(x, y)~∇yU = F (x, y, t) , y ∈ Ωx .

Because of the smallness of the cells within the global region, the fissure pressure is
assumed to be well approximated by the “constant” value u(x, t) at every point of
the cell boundary, so the effect of the fissures on the cell pressure is given by the
interface condition

(3.c) B(x, s)~∇yU · ν +
1
δ
(U − u) = 0 , s ∈ Γs ,
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where ν is the unit outward normal on Γx. (When δ = ∞, this becomes (and
converges to) the “matched” boundary condition, u(x, t) = U(x, s, t) on Γx.) Finally,
the amount of fluid flux across the interface scaled by the cell size determines the
remaining term in (3.a) by

(3.d) q(x, t) =
1

|Ωx|

∫
Γx

B(x, s)~∇yU · ν ds ,

where |Ωx| denotes the Lebesgue measure on Ωx, and this contributes to the cell
storage. Thus, the system (3) comprises a double-porosity model of “distributed
microstructure” type for a totally fissured medium; it need be supplemented by
appropriate boundary conditions for the global pressure u(x, t) and initial conditions
for u(x, 0) and U(x, y, 0) in order to comprise a well-posed problem. See [34], [40],
[39], [15], [50], [8], [20], [5], [6], [2], [4], [15], [16], [18], [19], [22], [23], [24], [25],
[26], [27], [28], [30], [29], [37], [48], [47], [49], [45], [44], [43] for applications and
mathematical theory for (3) and various related problems.

Finally, we remark that the system (3) can be rewritten as a single equation
of functional-differential type. By applying Gauss’ theorem to (3.b) we obtain from
(3.d)

∂

∂t

∫
Ωx

bU dy =
∫

Γx

B
∂U

∂ν
ds +

∫
Ωx

F dy

Use the Green’s function for the problem (3.b) to represent the solution U(x, y, t) as
an integral over Γx of u(x, t) and substitute this in (3.a) to get the implicit convolution
evolution equation

(4)
∂

∂t

{
a(x)u(x, t) +

∫ t

0

k(x, t− τ)u(x, τ) dτ

}
− ~∇ ·A(x)~∇u = f(x, t) .

The convolution term represents a storage effect with memory. See [31] for a
direct treatment and the very recent work of [38], where this equation forms the basis
for an independent theoretical and numerical analysis.

3. Partially Fissured Media.

Next we present a model for a partially fissured medium, that is, a fissured medium
in which there are some flow paths directly joining the cells in addition to the pre-
dominate connection with the surrounding fissure system. Thus the cells are not
completely isolated from one another by the fissure system. In this situation one
must account for the effect of the gradient of the global flow on the local flow within
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the cells, for it is this fissure pressure gradient which necessarily provides the driving
force for this cell-to-cell transport. In order to implement this in a model of par-
allel flow type, we introduce into the first order kinetic model (2) a secondary flux
~u3 through the cell system. This flux is assumed to respond to the fissure pressure
gradient with a delay analogous to that of the cell storage in response to the value
of fissure pressure in (2). The model system is then of the form

∂

∂t
(au1)− ~∇ · (A~∇u1) +

1
δ
(u1 − u2) + ~∇ · C∗~u3 = f(5.a)

∂

∂t
(bu2) +

1
δ
(u2 − u1) = 0(5.b)

∂

∂t
(c~u3) +

1
β

(~u3 + C~∇u1) = 0(5.c)

where we assume the responses of the cell structure at a point to the value and
to the gradient of fissure pressure are additive, an assumption that is valid for cell
structures which are symmetric with respect to coordinate directions. The third and
fourth terms in (5.a) give the distributed mass flow rate into the cells from the fissure
system at a point. According to (5.b), the first of these goes toward the storage of
fluid in the cells. Fluid from the fissure system enters the cell system at a point of
higher pressure, it flows through the cell matrix to a point of lower pressure, and
then it exits the cell back into the fissure system according to the second of these
exchange terms in (5.a). This results in a secondary flux ~u3 which follows the fissure
pressure gradient according to (5.c). The matrix C∗C arises from the bridging of
the cells and it distinguishes the partially fissured model (5) from the fully fissured
model (2). See [42] for a discussion and development of such models with multiple
nonlinearities.

In order to obtain a distributed microstructure model of a partially fissured
medium, we need to recognize that the cell system in (5) responds additively to the
value and the gradient of fissure pressure, that is, to the best linear approximation of
the fissure pressure at the cell location. As before the global fluid flow in the fissures
is described by

(6.a)
∂

∂t

(
a(x)u(x, t)

)
− ~∇ ·A(x)~∇u + q(x, t) = f(x, t) , x ∈ Ω ,

and the local flow in the cell at each point x is given by

(6.b)
∂

∂t

(
b(x, y)U(x, y, t)

)
− ~∇y ·B(x, y)~∇yU = F (x, y, t) , y ∈ Ωx .
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Our assumption that the cell pressure on the boundary is driven by the best linear
approximation of the fissure pressure leads to the boundary condition

(6.c) B(x, s)~∇yU · ν +
1
δ
(U − u− ~∇u · s) = 0 , s ∈ Γs ,

Finally, the exchange term q in (6.a) consists of two parts, the average amount
flowing into the cell to be stored and the divergence of the secondary flux flowing
through the cell structure. The total exchange is given by

(6.d) q(x, t) =
1

|Ωx|

∫
Γx

B(x, s)~∇yU · ν ds− 1
|Ωx|

~∇ ·
(∫

Γx

B(x, y)~∇yU · νs ds

)
.

The system (6) comprises the distributed microstructure model for a partially fis-
sured medium. This model was introduced in [10] to describe the highly anisotropic
situation in layered media and developed in [12] for more general media. See [3] for
a discrete version and numerical work.

When the cells Ωx are symmetric in coordinate directions, one can separate the
effects of storage from those of the secondary flux. Specifically, the storage can then
be expressed in terms of the value of the fissure pressure at the point over a time
interval through a convolution integral obtained as before from a Green’s function
representation of the cell problem, and the secondary flux and its corresponding
contribution to the global flow are expressed likewise in terms of the global flux.
This leads just as before to a functional partial differential equation of the form

∂

∂t

(
a(x)u(x, t) + k1(x, ·) ∗ u(x, t)

)
(7)

− ~∇ ·
(

A(x)~∇u(x, t) +
∂

∂t
k12(x, ·) ∗ ~∇u(x, t) + k2(x, ·) ∗ ~∇u(x, t)

)
= f(x, t) , x ∈ Ω , t > 0 .

which is known as Nunziato’s equation. This equation was presented in [36] without
any physical or philosophical justification as an interesting generalization of heat
conduction with memory models due to Gurtin and Chen. See [35] for mathematical
development of these equations.

4. Remarks.

The basic distributed microstructure model (3) is obtained as the limit by homog-
enization of a corresponding exact but highly singular partial differential equation
with rapidly oscillating coefficients. This provides not merely another derivation of
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the model equations, but shows also the relation with the classical but singular case
of a single diffusion equation, and it provides a method for directly computing the
coefficients in (3) which necessarily represent averaged material properties. A similar
result of convergence of a classical system to (6) is to be expected.

The first order kinetic model (2) is the limiting case of (3) as the permeability
coefficient B tends to infinity. In this limit the cell behaves as a single point, equiva-
lently, the function U is independent of the local variable y, and the geometry of the
cell is lost. The system (6) converges to (5) likewise as B tends to infinity, and when
δ tends to zero in (3) or (6), the limiting problem has the boundary conditions (3.c)
or (6.c) replaced by the corresponding “matched” conditions of Dirichlet type.

An interesting open problem is the determination of the coefficients in the system
(3) from measurements of data on the boundary of the global region. It would
be particularly interesting to obtain information on the cell geometry from such
boundary measurements.

The systems (1) and (2) comprise parabolic and degenerate parabolic dynamical
systems, respectively, in the product space L2(Ω)×L2(Ω). The functional differential
equations (4) and (7) lead to dynamical systems in L2(Ω), but these are governed
by C0 semigroups without regularizing effects, and the estimates and techniques for
these are comparatively difficult. These equations lack the parabolic structure one
seeks in such models. However the systems (3) and (6) do retain all of the parabolic
structure and corresponding estimates and regularity of classical parabolic systems
when they are posed on the spaces L2(Ω)× L2(Ω, L2(Ωx)).

Experience suggests that the distributed microstructure models are conceptually
easy to work with, they provide accurate models which include the fine scales and
geometry appropriate for many problems, and their theory can be developed in a
straightforward manner using conventional techniques. The numerical analysis of
these systems provides a natural application of parallel methods.
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[29] U. Hornung and W. Jäger, Homogenization of Reactive Transport through Porous
Media, in “EQUADIFF 1991” (C. Perelló, ed.), World Scientific Publishing,
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