
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 147, 69980 (1990) 

Diffusion Models for Fractured Media* 

ULRICH HORNUNG 

SCHI, P.O. Box 1222, D-8014 Neubiberg, West Germaq 

AND 

RALPH E. SHOWALTER 

Department of Mathematics, University of Texas, Austin, Texus 78712 

Submitted by K. L. Cooke 

Received June 27, 1988 

Two models for diffusion in fractured media are described; the compartment 
model as an example of a double-porosity system, and the micro-structure model 
as the limit by homogenization of local flux-coupled classical diffusion models 
which depend on the geometry. These two models are shown to be examples of a 
single evolution equation for which the appropriate initial-boundary-value 
problems are well-posed. This gives a unified theoretical basis for these two (as well 
as classical diffusion) models in which they can be compared and studied. cc 1990 

Academic Press. Inc. 

1. INTRODUCTION-DIFFUSION MODELS 

We begin with a review of certain models for diffusion in fractured 
media. In Section 2 we present a more recent micro-structure model and 
describe its derivation by homogenization. The objective is to obtain a 
model which more accurately portrays the exchange of fluid between the 
blocks and fractures of the structure and therefore must take account of the 
geometry of the local structure. In Section 3 initial-boundary-value 
problems are shown to be well-posed for a single implicit evolution equa- 
tion which contains all of these diffusion models and thereby establishes a 
unified theoretical basis for all of them. 

The classical equation for miscible displacement in a homogeneous 
porous medium takes the form 

a,(eu) =v. (DVU - uu), (1.1) 
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where 

H = saturation, 
u = concentration of the solute, 

D = diffusion/dispersion tensor, 
u = Darcy velocity of the fluid. 

Formally, the same equation also describes heat transport in porous media. 
Dropping the convective term and keeping the saturation fixed, one is led 
to the classical diffusion equation 

6 8,~ = V. (DVv). (1.2) 

On the other hand, fluid flow through porous media is described by the 
seepage equation 

at(@) = v. W(VP + gpe)), (1.3) 

where 

p = density of fluid, 
K = conductivity of the fluid, 
p = pressure in the fluid, 
g = gravitational acceleration, 
e = (0, 0, 1) = unit vector in vertical direction. 

Neglecting the influence of gravity and assuming both fixed saturation and 
constant compressibility, i.e., 

one arrives again at 

0 arP =v. (cKVp), (1.4) 

the same form as (1.2). Thus, Eq. (1.2), here called the clussicaf model, 
describes a general diffusion process in homogeneous porous media. 

In order to describe fluid flow through a heterogeneous medium consist- 
ing of two components, Barenblatt et al. [3] introduced a system of two 
such equations coupled in the form 

8,,a,u-e,,a,w+C((~--~=v.(~,vu) (1.5a) 

-0,,a,u+e,,a,w-~(~--~=~.(~2~W). (1.5b) 
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Models of this type and modifications thereof are usually called double 
porosity models. One important special case is the compartment model 

0, a,u+e,a,w=v.(DVu) (1.6a) 

a,w = a(u - w), (1.6b) 

which is commonly called the kinetic model or first-order rate model. This 
results from the essential assumption that the first component is a fracture 
system sufficiently well-developed that no flow occurs directly between the 
blocks. the second component, so D, = 0. (Also, one ignores as usual the 
effect of fissure pressure on the block porosity, so 8,, = 0.) Thus the 
individual blocks are involved only by way of exchange of fluid with the 
surrounding fracture system by which they are locally isolated. 

A similar set of equations was considered by Deans [9], Coats and 
Smith [S], Warren and Root [21], and many others in the context of mis- 
cible displacements in the following years. A discussion of exact solutions 
of this compartment model was given in Lindstrom and Narasimham [ 171. 
Van Genuchten and Wierenga [12] studied in detail the sensitivity of 
parameters and performed careful laboratory experiments and com- 
parisons. Charlaix et al. [7] used (1.6) to describe dispersion in glass 
beads. A special case of (1.6), the fissured medium model, was investigated 
by Bohm and Showalter [6] as a nonlinear form of the system 

8, a,w = v . (DVU), (1.7a) 

d,w=a(u-w). (1.7b) 

This system results whenever 0r = 0 in (1.6), that is, the relative volume of 
the fissure system is assumed to be so small that one can ignore the storage 
of fluid in the fissures compared to that in the blocks. 

Whereas the coupling in (1.6) models a simple distributed exchange due 
to pressure difference, Barker [4] introduced a concept that takes into 
account in more detail the dynamics of the flux exchange on the micro- 
scale of the individual blocks. Studying miscible displacement, he used 
what he calls block-geometry functions. In their survey paper van 
Genuchten and Dalton [ 1 l] developed the same ideas. On similar lines, 
Arbogast [ 1 ] and Douglas et al. [lo] studied models for fluid flow with 
constant compressibility in which they couple the fractures to the blocks 
via the pressures and the fluxes across the interfaces. Models of this type 
will here be called micro-structure models of diffusion in fractured media. 
Vogt [20] used the method of homogenization to derive a model for 
chromatography. Hornung and Jager [ 15, 161 used similar techniques for 
heterogeneous catalysis. In Hornung [ 143 a mathematical justification and 
discussion of the micro-structure model for miscible displacement is given. 
Arbogast et al. [2] apply this technique to oil reservoir simulation. 
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In the following section it will be shown that the micro-structure model 
can be written in the form 

8, ii,v+O”a,M’=V’(DVu) (1.8a) 

a,M’= T * arc, ( I .8b) 

where “*” means convolution with respect to time, i.e., 

(f* dU)=joi.fU-s) g(s) &. 

The history function T: R + -+ R + is convex, monotone decreasing, and has 
a singularity at f = 0; one typical example is 

t(t) = 6cr f exp( - n2k2at). 
k=l 

(1.9) 

Interestingly enough, the compartment model is a special case of (1.8) 
obtained by setting 

t(t) = x exp( -at) (1.10) 

instead of (1.9). Also one recovers the classical model by formally setting 

t = Dirac measure at t = 0. (1.11) 

From this standpoint, all three models are of the same form, namely, 

8, a,u+e”T*a,U=v~(DvU), (1.12) 

the only difference being the special choice of the history function T. 

Section 3 presents a general elementary proof for well-posedness of initial- 
boundary value problems for the integro-differential equation (1.12) with 
the additional appropriate initial and boundary conditions. Thus, equa- 
tions of the form (1.12) include at least all of the diffusion models presented 
above, each such model corresponding to a choice of the storage history 
function T, and so this equation will provide a basis on which to compare 
these various models. 

2. THE MICRO-STRUCTURE MODEL 

We shall briefly describe how the micro-structure model can be obtained 
by homogenization. In this technique one starts from a micro-model and 
passes to a certain limit which is the macro-model. For a discussion of 
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homogenization techniques in general, we refer to Bensoussan, Lions and 
Papanicolaou [ 51. 

To describe the micro-model we use the following notation in R3. Denote 
by ej the jth unit vector and the unit cell by U = {C:=, Aj e,: 0 d A, d 1 }. 
For any XC U we let A’” = mj ej +‘X be a corresponding integer translate 
of X by m = (m,, m2, m3) E Z3. The geometry of the micro-model is given 
by specifying a representative block Y,,, a domain whose closure is in the 
interior of U, and the corresponding fracture Y, = U - Y,, interface 
r= 8 Y,, and unit normal v on I-. The porous medium is a bounded 
domain 52 in R3. Let the scale parameter E > 0 be given. Then the geometry 
of the micro-structure is given by 

Q: =Qn u {EY~:mEZ3}, 

which represent the blocks and fractures, the interface r” = 
Q n U {EZ? m E Z3}, and the corresponding inner normal vE on r”. 

The variables in this model will be the density of fluid in the fracture 
system, uc: [0, T] x Q; -+ R, and the density in the blocks, ,v”:40, T] x 52; 
-+ IR. The flow characteristics will be described by constants 8, and BO, the 
relative pore volume in the fractures and blocks, respectively, and numbers 
d, .S*CX, the diffusivity in the fractures and blocks, respectively. With the 
preceding notation, the micro-model is described by the system 

8, d,u’(t, x) = ddu”(t, x), 

WE( t, s) = dj t, s), 

(2.la) 

(2.lb) 

E’CW’ VW&( t, S) = dv” . Vu&( t, s), (2.lc) 

e,a,wc(t,X)=F2CIdU’&(t,X), XEO”, (2.ld) 

for each t > 0. Thus the flows in each of the blocks as well as the fracture 
system are described locally by the classical model of diffusion, and they 
are connected by the requirements that pressure and flux be matched along 
the interface. 

The direct numerical solution of (2.1) when E is small is a complicated 
and ill-conditioned problem. By the homogenization method one obtains a 
much simpler problem, not necessarily of the same form, which frequently 
is a simpler and numerically well-conditioned problem. The coefficients are 
called the effective parameters, and this simpler homogenized problem will 
be a good approximation to the original (2.1). The most important aspect 
of this method is the explicit analytical construction of the limiting 
problem. 
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We shall give the form of this limit by homogenization, or macro-model, 
so obtained from (2.1). Its coefficients will be constructed from averages of 
solutions of a pair of cell problems. Thus, for each j = 1, 2, 3, let 0, : R3 + R 
be a U-periodic solution of the problem 

d,p,(y)=O, YE Yl 

~.V,G,(J~)= -v.e,, YEI- 

and define S to be the tensor with coefficients 

.si, = 1 Y, I 6, + J (3, a,(y) dY. 
Yi 

Here 1 Y, 1 is the measure of Y, The tensor D is then defined by D = dS. It 
is easily seen that the tensor S, and thus also D, are symmetric and positive 
definite. Similarly, let r: [0, co) x Y,, -+ R be the solution of the cell problem 

do a,r(t, Y) = cf Q-(6 Y), YE Y”, 

r( t, s) = 0, s E r, t > 0, 

40, Y) = 1, YE yo, 

and denote its average by 

p(t) = & /,r(t, Y) & t > 0. 
0 

From this we compute the history function 

which plays a primary role below. For example, if Y, is a ball of radius R 
at the origin, then 

r(t, y)=? i 
(- 1 Y ’ e -&&, sin MYl 

Kk=l 
k 

(4 R 

and so z is given as in Section 1. 
From the preceding we can write out the macro-model as follows. If c 

and w denote the density of fluid in the fracture system and in the block 
system, respectively, then they are to satisfy 

0, 8,u(t,x)+00a,w(t,~)=V.(DVu(t,~)), (2.2a) 

a,w(t,X)=(Z * d,U(‘, x))(t), XEQ, t>o, (2.2b) 
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where Oi= 1 YjI 19~ for j = 1, 2, and the indicated convolution is in t only. 
When both of (2.1) and (2.2) are supplemented with appropriate boundary 
and initial conditions, one can show the following result. 

THEOREM. The sequence vc converges strongly in L2(0, T; L’(Q)) to a 
solution v qf (2.2). 

Here we mean by v” the extension onto all Q which is harmonic in &. 
A formal derivation is given in Hornung [14]. For our purposes the 
following observation is useful: 

PROPOSITION. Let ok: Y, + iw, k = 1,2, . . . . be the orthonormal system of 
eigenfunctions of - (l/O,) A, with eigenvalues pk, i.e., 

-A,P,(Y) = &~II,J~Y~)> YE yo 
w,=o, y E r. 

Then one has 

Proof One derives easily the representation 

from which the result follows by averaging. 1 

Remark. It follows from the Proposition that the corresponding history 
function z, obtained from p as above, always has the properties mentioned 
above for the example (1.9) and we shall exploit these properties in the 
next section. 

3. THE CAUCHY PROBLEM 

We shall prove that initial-boundary-value problems are well-posed for 
the linear functional partial differential equation 

~+T*~-v.(Dvv)=f in Q x (0, T). (3.1) 

These will be formulated in Hilbert space as a linear implicit evolution 
equation for which we shall show that the Cauchy problem is well-posed. 
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Then (3.1) is recovered by choosing appropriate elliptic operators in 
Sobolev space. 

The following abstract setting suffices for our problem. Let V and H be 
Hilbert space with V dense in H and assume the embedding VG H is 
compact. Let a( ., .) be a continuous symmetric non-negative bilinear form 
on V such that for each E > 0 there is a c,: > 0 for which 

Identify H with its dual space H’ by means of the Riesz isomorphism, so 
we have Vc H c V’ by duality and .f(u) = (,f; u)* for u, ,f~ H. Define D(A) 
to be the set of UE V such that a(u, .) is continuous on V with the norm qf 
H; equivalently, there is a unique Au E H such that 

a(u, u) = (Au, u),, UED(A), UE v. 

This defines A: D(A) + H with the following structure: there is an 
orthonormal basis {(p, } of H such that Aqj = Aj,cp,, j2 1, and 
O<l”,d&< ... d A,, + cc as n + + co. Such structure is standard for ellip- 
tic boundary value problems on a bounded domain 0. The fractional 
powers A” are easily defined by this spectral resolution and it follows that 
V= @A”*). 

Consider the convolution operator 

(Lu)(t)=(z* u)(r)=j+-~)u(s)ds, 0 < t < T, u E L*(O, T). 

We shall assume 5~ L’(0, T) n C’(0, T), T 30, t’d0, and r’ is non- 
decreasing and not a constant; these hypotheses are consistent with the 
preceding Proposition. It follows from results of MacCamy and Wong 
[IS] that L is a monotone continuous linear operator on L*(O, T), i.e., 

I ‘(Lu)(t)u(t)d~O, 24 E L’(0, T). 
0 

Since L is maximal monotone operator it follows that (I+ L) ’ is a con- 
traction defined on all of L’(O, T). Finally we note that L is a forward 
evolution operator in the sense that for each t E (0, T), the value u(t) is 
determined by (Z+L)u=u and {u(s):~<s<~}. 

In the following we denote by L*(O, T; H) the space of (equivalence 
classes of) Bochner square-integrable functions from the real interval 
[0, T] to the Hilbert space H. Also we let H’(0, T; H) be the Hilbert space 
of those absolutely continuous H-valued functions on [0, T] whose 
derivatives belong to L’(O, T; H). We shall prove that the Cauchy problem 
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(Z+L)$+Av=f in L2(0, T; H) (3.2a) 

v(0) = v() in H (3.2b) 

has a unique solution v E H ‘(0, T; H) with data f, v0 as given. This will be 
achieved by a standard Galerkin scheme. Thus, we consider the projection 
of (3.2) onto (‘pi ), namely, 

(z+L)dj+l.,vj=f; in L2(0, T) (3.3a) 

Vi(O) = u’o, (3.3b) 

where f;(t) = (f(t), cpiJH and vi = (v,, ~p,)~ for j> 1. Then we shall obtain 
the solution to (3.2) in the form 

u(t)= f v,(t) cpj in H, O<t<T. (3.4) 
j= 1 

Note by our earlier remark on the forward evolution property of L that the 
problem (3.3) can be written in the equivalent form 

v,(t)=v()+ d(z+L)-‘(/i-~jDi)(s)ds, 
I 

O<t<T, 

even though L is a non-local operator. 
A fixed-point argument shows that (3.3) has a solution. Suppress the j, 

let f~ L2(0, T) and v0 E R be given, and define 9: L2(0, T) + L’(O, T) by 

Fv(t)=v,+ 
i 
;(I+L)y (f-h)(s)&, O<t<T, 

Then by Cauchy-Schwartz follows 

l(~~--u)(~)12~~2fIIU-uV/l~2~0,,,, OdtdT, (*I 

since (I+ L)-’ is a contraction on L’(O, t). Integration of (*) gives 

IIF24 - F-VII L:to,,& IIU- 4lL+3J), 
J”i 

0 < t d T, u, 1.1 E L’(O, T). 

By an induction argument which uses (*), there follows by standard 
methods the estimate 

0 d t < T, u, v E L’(O, T), 
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for integer II 3 I. This shows that for sufficiently large n, 9” is a strict 
contraction and, hence, 9 has a unique fixed point in L2(0, T). This fixed 
point is the desired solution of (3.3). 

Let v, be the solution of (3.3); since (I+ L) ’ and L are continuous on 
L2(0, T) it follows that V, EH’(O, T) and Ld, E L*(O, T). Since L is 
monotone on every L’(0, t), 0 <t d T, it follows by multiplying (3.3) by i’, 
and integrating that 

This yields the fundamental estimate 

Il~,IIt~~o,,,+~,l~,~f~12~~.,I~:‘12+ Il,f;Ilt~~O.t~~ O,<t,<T, (3.5) 

for any solution of (3.3). Iffe L2(0, T; H) and USE D(A’12), that is, 

then the sequence of partial sums in (3.4) is Cauchy, hence, convergent to 
v E H ‘(0, T; H) with A ‘j2v( .) E C(0, T; H). 

THEOREM. Let the operators A and L be given as above. For each 
VIE D(A’/‘) and f E L2(0, T; H), there is a unique solution v E H’(0, T; H) 
with A”‘v( .) E C(0, T; H) qf the Cauchy problem (3.2), and it satisfies 

dv 

II II At + IIA 1’2v(t)ll ‘, d IIA 1’2vo/l :, + ll.fIl :,zco, T;H), O<t<T. 
L~(O,r;H) 

(3.6) 

Proof: The existence of such a solution has been shown already. Note 
that for any solution v E H ‘(0, T; H) of (3.2) it follows that ti and Ao( .) are 
in L*(O, T; H), and this implies A1’2v( .) belongs to C(0, T; H). The proof 
of (3.6) is the same as that of (3.5). From this follow the uniqueness and 
continuous dependence on data f, u0 for the Cauchy problem. 

Remark. Using the fractional powers A”, one can show that if 
USE D(A”) and f E L’(O, T; D(A”-“2)), there is a unique solution of (3.2) 
in L*(O, T; D(A”-“2)) with A%( .) E C(0, T; H). 

EXAMPLE. Let Sz be a bounded domain in R” and T> 0. The Sobolev 
space H’(O) is the Hilbert space of (equivalence classes of) functions u in 
L’(Q) for which all generalized derivatives, 13/-u, 1 <:j,< n, belong to L’(Q). 
Choose V to be the closed subspace of those UE H’(Q) whose trace or 
boundary values are zero. Also we set H= L’(Q); the imbedding Vq H is 
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compact by a classical result of Rellich. Let the matrix { d,i: 1 < i, j d n > be 
symmetric and satisfy the ellipticity condition 

1 45i5, 24, C 15,12, <EIW”, 
i,j=l j= I 

with d, > 0, and define 

a(u, u) = i j” d, 8+(x) ~,v(x) dx, u, UE v. 
i,j=l Q 

This bilinear form on V satisfies the conditions required in the Theorem, 
and the operator A is determined by 

Au= - i d,(dg8;u), D(A) = (u E v: Au E L2(Q)}. 
,,j= I 

Note that such a u E D(A) necessarily satisfies the generalized homogeneous 
Dirichlet boundary condition in the sense of trace, and that the value of Au 
is computed in the sense of distributions on Q. See Showalter [19] for 
details on such now standard constructions. Let the function r be given as 
above; cf. the example at the end of Section 1. From the Theorem it follows 
that the initial-boundary-value problem 

d3 - i aj(d, a,u(x, t)) =f(x, I), XEl2, 
i,j=l 

(3.7a) 

u(s, t) = 0, seai2, O<t<T, (3.7b) 

4% 0) = u,(x), XESZ, (3.7c) 

is well-posed whenever f~ L2(Q x (0, T)) and u0 E V are given. In par- 
ticular, each term in (3.7a) belongs to L2(Q x (0, T)), so at a.e. t E (0, T) we 
find u( ., t) E D(A); when X2 is smooth this establishes spatial-regularity of 
the solution. 

Remark. The recent very deep results of [13] include Lipschitz pertur- 
bations of (3.1) in which A is an m-accretiue operator in a general Banach 
space. These are obtained by rather technical and interesting non-standard 
approximations; additional related references can be found in [ 131. 

ACKNOWLEDGMENTS 

The authors are grateful to G. M. Homsy (Stanford) and M. Th. van Genuchten (Riverside) 
for useful hints. After this work was completed, R. Torrejon kindly showed us the reference 
1131 as well as other related works. These results were anticipated by the referee who also 
gave some helpful remarks. 



80 HORNUNC; AND SHOWALTER 

REFERENCES 

I. T. ARHOC;AST, Analysis of the simulation of single phase flow through a naturally 
fractured reservoir, SfAM J. Mu/h. Anal. 26 (1989). 12-29. 

2. T. AREIOGAST, .I. DOUGLAS. AI‘;D U. HOKNUN(;, Deriving the double porosity model of 
single phase flow via homogenization theory, SIAM J. Mafh. An& to appear. 

3. G. I. BARENHLATT, I. P. ZHELTOV, ANI) I. N. KOTHINA, Basic concepts in the theory of 
seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960). 
1286-1303. 

4. J. A. BARKER, Block-geometry functions characterizing transport in densely fissured 
media, J. Hydrol. 77 (1985), 263-279. 

5. A. BENSOUSSAN, J. L. LIONS, AND G. PAPANICOLAOU, “Asymptotic Analysis for’Periodic 
Structures,” North-Holland, Amsterdam, 1978. 

6. M. BBHM AND R. E. SHOWAL.TER, Diffusion in fissured media, SIAM J. Math. Anal. 16 
(1985), 500-509. 

7. E. CHARLAIX, J. P. HULIN. AND T. J. PLONA, Experimental study of tracer dispersion in 
sintered glass porous materials of variable compation, Phys. Fluid.7 30 (1987), 169C1698. 

8. K. H. COATS, AND B. D. SMITH, Dead-end pore volume and dispersion in porous media, 
Trans. Sot. Pet. Eng. 231 (1964), 73-84. 

9. H. A. DEANS, A mathematical model for dispersion in the direction of flow in porous 
media, Trans. Sot. Pef. Eng. 228 (1963), 49-52. 

10. J. DOUGLAS, P. J. PAES LEME, T. ARBOGAST, AND T. SCHMITT, Simulation of flow in 
naturally fractured reservoirs, in “Proceedings, Ninth SPE Symposium on Reservoir 
Simulation, Society of Petroleum Engineers, Dallas, Texas, 1987,” pp. 271-279, Paper 
SPE 16019. 

11. M. TH. VAN GENUCHTEN AND F. N. DALTON, Models for simulating salt movement in 
aggregated tield soils, Geoderma, 38 (1986), 165-183. 

12. M. TH. VAN GENUCHTEN AND P. J. WIERENGA, Mass transfer studies in sorbing porous 
media. I. Analytical solutions, Soil Sri. Sot. Amer. J. 40 (1976), 473480. 

13. G. GRIPENBERG, Volterra integro-differential equations with accretive nonlinearity, 
J. Differential Equations 60 (1985), 57-79. 

14. U. HORNUNG, Miscible displacement in porous media influenced by mobile and immobile 
water, in “Nonlinear Partial Differential Equations” (P. Fife and R. Bates, Eds), Springer- 
Verlag, Berlin/New York, 1988. 

15. U. HORNLJNG AND W. JKGER, A model for chemical reactions in porous media, in “Com- 
plex Chemical Reactions, Modeling and Simulation” (P. Deuflhardt and W. JIger, Eds.), 
Springer-Verlag, Berlin/New York, 1987. 

16. U. HORNUNG AND W. J;~GER, Diffusion, convection, adsorption, and reaction of chemicals 
in porous media, to appear. 

17. F. T. LINDSTROM AND M. N. L. NARASIMHAM, Mathematical theory of a kinetic model for 
dispersion of previously distributed chemicals in a sorbing porous medium, SIAM J. Appl. 
Math. 24 (1973), 496510. 

18. R. C. MACCAMY AND J. S. WONG, Stability theorems for some functional differential 
equations, Trans. Amer. Math. Sot. 164 (1972), l-37. 

19. R. E. SHOWALTER, Existence and representation theorems for a semilinear Sobolev equa- 
tion in Banach space, SIAM J. Math. Ana/. 3 (1972), 527-543. 

20. CH. VOCT. A homogenization theorem leading to a Volterra integro-differential equation 
for permeation chromatography, preprint # 155, SFB 123, Heidelberg, 1982. 

21. J. E. WARREN AND J. Roar, The behavior of naturally fractured reservoirs, Sot. Pet. 
Eng. J. 3 (1963). 245-255. 


