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The Cauchy problem for 

EU,, + u, + x(u), 3 0 (*) 

is shown to be well-posed in L’ by semi-group methods. The solution uE,’ depends 
continuously on the maximal monotone graph a and on E >O. 0 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

Our interest in Eq. (*) arose originally from a classical problem in the 
dynamics of gas absorption. This problem provides a useful conduit 
through which to introduce our results and to suggest some physical 
relevance, so we shall briefly recall this problem before describing the 
results obtained. Consider a cylinder of constant cross section, whose axis 
is parametrized by x E Iw, and which contains an absorbing material. A 
gas-air mixture is passed at a uniform velocity through the cylinder; we 
want to describe the exchange of gas between this flow field in the pores 
and the absorbing material fixed in the cylinder. Let u(x, t) denote the con- 
centration of the gas in the absorbent at position x and time t > 0, and let 
w(x, t) be the concentration of gas moving past x in the system of pores. 
The essential properties of the absorbent are defined by a relation or func- 
tion c1 called the absorption isotherm. Thus, v E a(u) or [u, v] E c1 if v is a 
concentration of gas on the surface of the absorbent which is in equilibrium 
with the concentration u in its interior. The rate of exchange of gas between 
the absorbent and its pores is then proportional to w-v. The dynamical 
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146 SHOWALTER AND XU 

problem that directly results from mass-conservation is of the form 

i 

u, + 1 (u - w) = 0, w,+i(w-+o, 
& E 

(1.1) 

tJ E Hu), --co<<<<, t > 0, 

where U, is the rate at which gas is stored in the absorbent, w, is the flux 
due to transport with unit rightward velocity, and the kinetic coefficient l/s 
is a measure of the surface area common to pores and absorbent. By 
eliminating w from (1.1) we formally obtain (*). 

We shall show that the Cauchy problem for (1.1) is well-posed in the 
Banach space L’(R) by standard methods of nonlinear semigroup theory. 
This system is essentially equivalent to 

ut+~(z-(z+Ea)-l)u=O, v E 4u), (1.2) 

wherein c( is a rather general maximal monotone graph and d is an 
extension of d/dx on an appropriate domain in L’(R). In (1.2) we recognize 
8,~ (~/E)(Z- (I+ E ~3~‘) as the Yoshidu approximation of 8; 8, is a 
bounded operator for which 8, + 8 as E + 0 in an appropriate sense. This 
suggests that the solution z./ of (1.1) should converge to that of the scalar 
conservation law 

u, + au = 0, 0 E a(u), (1.3) 

with the same initial data. The proof of this convergence is our primary 
goal and it is attained in Section 4. That the Cauchy problem for (1.3) is 
well-posed in L’ will be established as a useful preliminary result of 
incidental interest; the corresponding result for (1.1) is surprisingly some- 
what more delicate. For the absorption dynamics problem our convergence 
result means that the conservation law (1.3) is the limiting form of the 
model (1.1) as E + 0. The parameter E > 0 is the mean radius of the pore 
paths with a fixed total cross section area, so (1.3) is the limiting 
homogeneous model with a continuum of pore paths. 

The semigroup treatment of the conservation law is certainly not new; 
see [2, lo] where CI is continuous, strictly monotone, and surjective, but 
any spatial dimension is permitted, and the relation with Kruzkov’s 
entropy solution is established. Here we treat the case n = 1; the simplicity 
of the method is a measure of the power of the semigroup method. Also we 
obtain some convergence results when the mass-conservation holds, and 
this will here be related to the single-valuedness of LX(U) at u=O. 

Equation (1.2) is easily resolved in any L* by the Cauchy-Picard 
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Theorem whenever a is Lipschitz, and in that case it is equivalent to (1.1). 
This equation has the interesting property of preserving spatial regularity 
and discontinuities at a point, but these estimates are lost, of course, as 
E -+ 0. See [ 141 where this is done in higher dimension and with locally 
Lipschitz E. If the operator a is replaced by the Laplacian, -A, then (1.2) 
and (1.3) formally become, respectively, the fissured medium equation [S] 
and the porous medium equation [3, 4, 161. See the cited references for 
analogous existence and continuous dependence results, and [2] for the 
corresponding convergence with E. See [ 151 for the addition of a linear 
convective term. 

The convergence of U& to u exhibits the scalar conservation law as a limit 
of the first-order hyperbolic partial differential equation (1.1) instead of the 
classical parabolic viscosity approximation. This nonstandard approxima- 
tion of (1.3) is the basis for some numerical regularization schemes which 
display substantial promise [8]. Note that (1.2) is not the Yoshida 
approximation of (1.3), since only the linear factor has been regularized. 
For a discussion of the approaches to (1.3) by calculus of variations and 
Hamilton-Jacobi theory, finite difference schemes, viscosity methods, and 
the method of characteristics, see [ 171. 

The semigroup method is to realize the given problem as an abstract 
Cauchy problem 

u’(t)+A(u(t))30, t > 0, u(0) = 240. (1.4) 

The semigroup theory gives a (generalized) solution to (1.4) from 
appropriate conditions on the multi-valued operator A in the Banach space 
X. Sufficient conditions are that A be accretiue, i.e., if wje A(uj) for j= 1,2, 
then for each p > 0 

and that A satisfy the range condition, Rg(Z+ PA) = X. Then A is called 
m-accretiue. We shall construct m-accretive operators A and A” on the 
appropriate domains in L’(R) which are realizations of a 0 c1 and a,0 ~1, 
respectively, in Section 2 and Section 4. We refer to [9, 121 for expositions 
of the semigroup theory and various applications to initial-boundary-value 
problems for partial differential equations. 

Standard notation Lp, Wm3p, will be used for the Lebesgue and Sobolev 
spaces; each is a Banach space with its usual norm. For -cc <a< 
b d +‘cc we denote by C[a, b] the space of bounded uniformly continuous 
real-valued functions on the interval [a, b], and by C,[a, b] those which 
vanish at a. For the case a = - cc which occurs frequently below we use 
the notations LP(b) = Lp( - co, b), C,(b) = C,[- co, b], and so on. The 
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pre-compact subsets of each of the above spaces are characterized by the 
classical theorems of Ascoli-Arzela and Kondrachov and their 
variants [ 11. 

Whether an operator A in L’(a, 6) is accretive can be characterized by 
means of the L’ -L” duality map involving the graph sgn, defined by 
w(x) = {x/l4 > f or x # 0 and sgn(0) = [ - 1, 11. Thus, A is accretive in 
L’(a,b) if and only if for each pair ~;EA(U~) for j= 1, 2 there is a 
measurable selection (T E sgn(u, - UJ such that Jf: (fi -f2)a 3 0. Similarly, 
we shall use the graphs sgn+ (x) = i(l + sgn(x)) and sgn-(x) = 
{(sgn(x) - l), and we shall denote by x+ = sgn+(x).x, xP =sgn-(x).x 
the positive and negative parts of x E R. Finally, the minimal section of a 
maximal monotone graph a is denoted by x0, so we denote by sgn, and 
sgn,+ those functions which agree with sgn and sgn+, respectively, at each 
x # 0 and for which sgn,(O) = sgn,+(O) = (0). See [6] for information on 
maximal monotone graphs in R. 

Standard results on the convergence of m-accretive operators A, to 
another such A, will be used. Specifically, we say A, + A, if 
lim n~ocl(l+~~.)~lf=(Z+~~,)-lf for each VEX and p>O. This is 
easily seen to be equivalent to the property that for each [u, f] E A co there 
is a sequence [u,, f,] E A,, such that u, -+ u and f, + f. That is, resolvent 
convergence and graph convergence are equivalent for m-accretive 
operators. A useful consequence is the following. 

LEMMA 0. Let a, a, be maximal monotone graphs in R! and assume 
a, + CI. Zf u, + u, v, + v, and v, E a,(~,) in L’(a, b), then v E a(u). 

Proof Let v* ECL(U*) in L’(a, b); then there is a sequence v,* ECI,(U,*) 
with of -+ v* and u,* -+ u* in L’(a, b). Since ji (v, - v,*) sgn,(u, - u,*) 3 0 
by the monotonicity of a, and the Yoshida approximation sgn,, E > 0, by 
letting n + cc and then E + 0 we obtain si (v - v*) sgn,(u - u*) > 0 for all 
such [u*, v*] E a. This implies [u, v] E o! by the maximality of tl in L’(a, b). 

2. dldxoa IN L’ 

Assume c1 is a maximal monotone graph in R with 0 E a(0). We consider 
the following realization of d/dx 0 a in L’(b) for each b < + 00. 

DEFINITION. WE A(u) if w, UE L’(b) and there exists VE L:,,(b) with 
v, = w a.e. on (-co, b), v(x) E cr(u(x)) a.e. x < b, and v( - co) = 0. 

Note that any distribution on R whose derivative is in L:,, is necessarily 
an absolutely continuous function. Thus, it is clear that w E A(u) if and 
only if U, w E L’(b) and v(x) zJ”~ w E @U(X)), a.e. x < b. In particular, 
v E C,(b). We shall prove the following. 
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THEOREM 1. The operator A is m-accretive on L’(b) for each b < + 00. 
Zfcr(0) = (0) th en w E A(u) if and only if there exists v E L:,,(b) with v, = w 
a.e. on (-co, b) and v(x) E a(u(x)), a.e. x < b. If, in addition, b = + co, then 
v(+Go)=J+~ w=o. 

For the proof we begin with the following calculus result. Let D = d/dx 
on distributions. 

LEMMA 1. IfvELm(a, b), DvEL’(a, b), and the measurable aEsgn+(v) 
a.e., then 

Dv+ =a.Dv a.e. x E (a, b). 

Proof: A standard result is that Dv+ = sgn,f(v) . Dv a.e.; see [ll, 131 
for example. If x E Q = (x E (a, b): v(x) # 0}, then a(x) = sgn,+ (v(x)). The 
complement of Q consists of its accumulation points x, at which 
v(x) = v+(x) =0 and Dv(x) = Dv+(x)=O, and the isolated points which 
are countable. 

PROPOSITION 1. A is accretive on L’(b). 

Proof: Let p > 0 and fje (I+pA)(u,) with V~ECL(U~) as above for 
j= 1, 2. Choose a(x) = sgn,f(u,(x) - uz(x) + v,(x) -v,(x)), x < b. Since 
uj+pDvj=fj,j=1,2, and O<a<l, it follows that 

a(u,-u2)+~aD(u1-u2)~(fi-fz)+, a.e. (2.1) 

The graph c( is monotone, aE sgn+(v, - v2) a.e., so Lemma 1 shows 
a D(v, - v2) = D(v, - v2)+ a.e. Likewise, aEsgn+(u,-u,), so 
a(u,-u,)=(u,-u,)+. Finally, v,(-co)=v,(-oo)=Oby thedefinitionof 
A, so an integration of (2.1) yields 

J;, (u,-%)+ +P(vI(x)-vAx))+ q, (fi-fi)+? x< 6. (2.2) 

The corresponding estimate holds for the negative part of the differences, 
so by addition of these we obtain 

x < b. (2.3) 

This shows A is accretive; in fact we have 

IIUI -u,llLQq? P /Iv1 - hll C,,(b) G kfi -fill L’(b) (2.4) 

whenever p>O and fjE(Z+,uA)(uj),j= 1,2. 
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COROLLARY 1. The operator A is closed, Rg(Z + PA) is closed for p > 0, 
and whenever 

f=u+pw, weA 

we have the estimates 

Ilull L’(b) > P Ml C,,(b) G Iif /I L’(b), 

IIu+ II LP(b) 6 iif’ iI LP(b)> lGp< +co, 

lb+ 11 C,,(b) < a0(Ilf + 11 L”(b)). 

ProoJ Let w, E A(u,) and w, + w, 24, + u in L’(b). Then 
v,(x) =JTa w, converges in C,(b) to v(x) =J?, w. Since a is maximal 
monotone and, for some subsequence, u,(x) + u(x) a.e., it follows 
v(x) E a(u(x)) a.e., so w E A(u). Thus A is closed, and the closedness of the 
range of Z+ PA now follows from (2.4). 

The first desired estimate follows from (2.4), since OE a(O), and the 
second with p = 1 likewise from (2.2). For 1 <p < co, note first that 

uPsgn+ u+v,~~-~sgn+ uQf +tP-l sgn + u, a.e. 

and that 

f 

b 

uPsgn’ u= iIu+II$(b)? 
s 
b f +u’-‘sgn+ u< llf+IILP(b) II”‘II&d)’ 

-cc -cc 

Since a(r) = rpP ’ sgn +r is single-valued, the composition 0 0 a- ’ is maxi- 
mal monotone, and so there is a convex lower-semi-continuous primitive 
j: lR-tR+. That is, LJj=ooa-’ withj(O)=O. Then 

v x upP1sgn+ u=v,@(v(x)) 

so we obtain 

f 

b 

v up-lsgn’ x a=.i(v(b))-j(v(a))>O-J~‘O)(oOa~‘),, O<a<b. 
u 

Letting a + - 00 we obtain from v E C,(b) 

s b 

v x up-l sgn+ 2420, 
-cc 

so the case 1 <p < + cc is established. The case p = + cc follows from this, 
but we obtain it directly in the following. 

Suppose now that B = )I f + /I L"(b) < co. If u(x) < B, a.e. x < b, then we are 
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done. Otherwise, B E dom(cr) and 

(u(x)- B) 4~) + Au(x) -a,(B)), 0) Q (f+(x) - B) 4x)6 0, 

where G(X) E sgn,+ (u(x) - B + V(X) - cc,(B)). Since o! is monotone we have 
a(x) belonging to sgn’(u(x) - B) and to sgn’(u(x) - a,(B)) at a.e. x, so 

(U(X)-B)f+~D(u(x)-cc,(B))t ~0, a.e. 

From this follows 

1 x (u-B)+ +p(u(x)--C,(B))+ </4-%(B))+ =O. 
-cc 

so we obtain 

u(x)<4 a.e. xdb, 

u(x) 6 a,(B), all x < b. 

Additional information on the domain and range of A follows from the 
next result. 

LEMMA 2. Suppose a(O) = [r, s] SO. rf UE L’(b), u E L:,,,(b), U(X) E 
a(u(x)) a.e. x < 6, and lim x- -22 u(x) = R, then R E [r, s], 

Proof: Assume R < r. Since R belongs to the closure of Rg(a), 
(R, Y) c Rg(a) and so there is an 5 E (R, r) and an q < 0 for which L$Y E a(q). 
Then for sufficiently negative x, u(x)< r and so u(x)<q<O. This 
contradicts u E Li( b), so we have R B r. Similarly we obtain R 6 s. 

COROLLARY 2. Assume IX(O) = (0). Then WE A(u) if and on& if 
u, w E L’(b) and there exists UE L:,,,(b) with Du = w and UECI(U) a.e. on 
(-co, b). In this case, u(x) = sYoo w, x < b. rf, in addition, b = + 00, then 
u(co)=p, w=o. 

The point of Corollary 2 is that the characterization of the domain can 
be simplified and the range is similarly delimited when c1 is single-valued at 
the origin. This condition on a is appropriate. 

EXAMPLE. Let CI = sgnf and consider f E (I + A)(u). That is, 
u,fEL’([W), u+Du=f and uEsgn+(u) a.e., u(-co)=O. If f>O and 
JY, f d 1 then u = 0, u(x) =sYco f, gives the solution. It is not necessary 
for fEm f = 0. If we delete the condition “u( - cc) = 0,” then a second 
solution, u = f, u = 1, is obtained, and this nonuniqueness shows the 
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corresponding operator is not accretive. In fact, both u and u are 
nonunique. 

It remains to prove existence of 

weA( u+w=f (2.5) 

for f E L’(b). Since A is closed it suffices to consider f E L’ with bounded 
support. We shall choose an approximation aA of CI and solve 

uj.+ocr”(Uj.)=f in L’(b) (2.6) 

for u;., A > 0, then show there is a limit, u = lim,,, uA, which is the 
solution of (2.5). 

The Yoshida approximation tll = (l/A)(Z- (I+ Aa) ~ ‘), characterized by 
y = E,(X) iff YE CL(X - Ay), is monotone and Lipschitz on R. We shall 
instead use aA = AZ+ ~1~ which is additionally strictly monotone and 
surjective. It is characterized by y* = a”(x) = IX+ y iff y* - AXE 
a(x - qy* - Ax)). 

LEMMA. d -P c( in R. 

Proof Set y, E (I+ cl’))’ x so we have 

x-y,-~~j.Ea(yj~-~(x-y,)), i > 0. 

Then, lyll < 1x1, so a subsequence y,, converges to y E R, and this satisfies 
x-~ECI(Y), hence y=(Z+a)-lx. But such a y is unique, so 
lim,,, yj, = y. 

For each A > 0, the ordinary differential equation (2.6) clearly has a solu- 
tion ui. E L’(b); note that c? is Lipschitz, f vanishes near - co, and we have 
the estimates of Corollary 1. Denote by T,, the translation operator, 
r,, u(x) = v(x - h), h > 0. Since rh ui, satisfies (2.6) with f replaced by rh f, we 
obtain with wA = c(“(u~) 

IIuAII~++ Il~~llc,(~)~IlfII~~(~)~ -~<aGb, 

IIzhu2 - uA L.‘(b)? Il~/7WA - WAII Co(b) G lbhf -f IILl( 

Suppose that b < + co. These estimates imply that {Us,} is pre-compact in 
L’(b) and that { wA} is pre-compact in C,,(b), hence, there is a subsequence, 
which we denote again by {Us}, which converges to some u in L’(b). The 
corresponding sequence { wl} satisfies 

w;(x)=jx (f-u,), --co <x<b 
-cr 
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and converges to some w in C,(b). From Lemma 0 it follows that w E E(U) 
a.e. on (-co,b)and weclearlyhave W(X)=!:, (f-u), sou+A(u)~f. In 
the case b = + 00 we obtain a solution u E L’(R) from above, but the 
convergence is in L’(b) for every b< + 00. 

We summarize our results for later reference. If a is maximal monotone 
on R, OEC((O), and b< + co, then the operator A is m-accretive in L’(b) 
and the resoluents, J, = (I + @) ~ ‘, p > 0, satisfy the following: 

J, commutes with translation zh, h > 0, and 

lI(J,,fi -J&l+ II Ll(b)G ii(.fi -fd+/ILl(b,, fi, f2 E L’(b); (2.7a) 

/I Jpfll ,v 6 llfll u, f E L”(b), ldp6 +co, 

- Ilf- II L=(b) Q J,,f(4 G Iif+ iI L=(b), a.e. x; (2.7b) 

if also a(O) = (0) and b = +co, then 

3. CONTINUOUS DEPENDENCE AND THE EVOLUTION 

We recall certain facts from the nonlinear semigroup theory which 
formally provides a solution to the abstract Cauchy problem (1.4). 

THEOREM A. Let A be m-accretive in the Banach space X. Thus, for each 
E > 0 and a0 E X there is a unique a,: [0, co) + X for which 

flu,-u,(r-e))+A(u,(t))sO, t>o 
%(f) = uo, t Q 0. 

If u. E D(A) then u(t) = lim, _ o u,(t) exists, with uniform convergence for t 
bounded. 

This limit provides a generalized notion of a solution of (1.4) known as 
the integral solution [2]. This integral solution of (1.4) is unique; the 
following perturbation theorem shows that it depends continuously on the 
operator A. 

THEOREM B. Let A, be m-accretive on X and u;t~ D(A,) for 
n = 1, 2, . . . . + co. Assume u;t + u; in X and that A,, + A, as graphs, (cf. 
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Section 1). Then the corresponding integral solutions u, of 

4(t) + A,(un(t)) 3 03 t>o, u,(O)=u;f (3.1) 

satisfy lim, _ o. u,(t) = u,(t), with uniform convergence for t bounded. 

From the preceding results it is natural to define a generalized solution 
of (1.3) with u( ., 0) = u0 in L’(b) to be the integral solution of (1.4) in the 
situation of Theorem 1. When c( is smooth this agrees with the development 
in [2, lo]; in the general case we are interested in the continuous 
dependence on a. 

THEOREM 2. For each n = 1,2, . . . . + 00, assume a,, is a maximal 
monotone graph in Iw with 0 E a,(O), n = 1,2, . . . . 00, and assume a,(O) = (0) 
or b < + co. Let A, be the m-accrefive operator on L’(b) constructed from 
CI, as in Section 2. If a,, --f a, in [w, then A,, + A, in L’(b). 

Prooj If the operator A is constructed from the graph a as above, 
then pA is the operator obtained from pa for each p > 0. Thus, to show 
resolvent convergence of A, to A, it suffices to show 
lim ,,+,(Z+A,,plf=(I+A,)-‘f for each feL’(b). For each n= 
1, 2, . ..) cc, we define u, = (I+ A,)-’ f. Then from (2.7a) we obtain 

jR I% G j” IfI3 -co<R<b, (3.2a) 
--ot --oo 

II~A- &2IIL’(b) G lbhf -f IIL’(b)? h > 0. (3.2b) 

Suppose b< + co, and let [u,, u,, w,] be the solution: u,+ w,= f, 
v,(x) =sTm w,~a,(u,(x)), a.e. x< b. Since {u,,} is pre-compact in L’(b), 
so also is {wn}, so for some subsequence, u,! -+ u, w,, + w in L’(b) and 
u,,, + v in C,,(b). From Lemma 0 we obtain [u, v, w] = [u,, v,, w,]; by 
uniqueness of this limit it follows that lim,, a; u, = u, in L’(b). 

Consider the case b = + co. In order to establish that (u,} is convergent, 
it suffices to show that it is pre-compact in L’(R), and so in addition to 
(3.2) we need only to establish 

lim s iu I4 =o, uniformly in n. 
R-cc R 

From (2.7a) we obtain the pointwise estimates 

O<u,‘<(I+A.)-‘(f+), (I+ A,)-’ (f-)Gu, GO. 
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These yield 

Since we have JR” Iu,,I = jz (u,’ - U; ), it suffices to consider the case f 3 0. 
But then U, >O by (2.7a), and so U, + U, - Iu,-- u,I ~0. Since 
u,(x) -+ u,(x), a.e. x E R, by the case b < cc above, we obtain from Fatou’s 
Theorem and (2.7b) 

2 jm tl,<liminfj= (u,+u,-Iu,--u,/) 
-m n-m -x 

Thus 

and the right side vanishes by (2.7c), so we are done. 

The condition that ~1 need be single-valued at the origin cannot be 
deleted from Theorem 2. 

EXAMPLE. Let c( oc = sgn + and denote its Yoshida approximations by 
cc,=n(r-(1+(1/n)@)-‘). Let f‘~Li(Iw) with O<f, O<jf<l, and 
consider the problems in L’(R). 

u, + ml(KJ =f, n2 1, (3.3) 

u+Dv=j”, UE~,(U). (3.4) 

The solution of (3.4) is u=O, u(x) =j.ya f. If the solution U, of (3.3) 
converges to 0 in L’(R), then 

lim a,(u,)(R) = lim 
R-+m 

uniformly in n b 1, 

and, hence, lim, _ + 3. u(R) = lim, _ + ~ s! o. f = 0, a contradiction. Note, 
however, that U, + 0 in L’(b) for every b < co. It is easy and instructive to 
compute U, explicitly in this example. 

Finally, we collect and summarize various properties of the generalized 
solution. These are a direct consequence of corresponding properties of the 
resolvents J, of the operator A as summarized in (2.7), and the generation 
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Theorem A in which 

u,(t) = .y+ lug, 

where [t/~] is the greatest integer in C/E. 

E > 0, 

PROPOSITION 2. Assume a is maximal monotone on [w, OE a(O), and 
h < + co; let A be the operator constructed in Section 2. For uO, v0 E D(A), 
denote by u, v E C( [0, co), L’(b)) the respective generalized solutions of (1.3) 
with u( ., 0) = u0 and u( ., 0) = uO. Then we have the following: 

(a) Il(u(t)-~v(t))+/I~l(b)~ II(~~--u,)+IIL~~~~~ f2O 
and u(t)=tr,u(t) zfu,,=ThuOfor h>O; 

(b) Ilu(f p(h)< IIUOIILP(~), t2O if1 6P6 +a, 

anda.e. on (-co,b)x(O, co) we have 

- IIf4m II LX(b) < 4% t) G IIUO’ II L,“(h); 

(c) If, in addition, a(O) = (0) and b = + co, then 

(d) Assume the situation of Theorem 2 holds, and for each 
n = 1, 2, . . . . + co, let U” denote the generalized solution of 

u; + Dv” = 0, un E a,(z.P), in L’(b), t>o 

with u”(O) = u;t E D(A,), and assume u;1-+ u; as n -+ co. Then U” + uoc in 
C( [0, T], L’(b)) for every 0 < T< + co. 

Remark. Let a be a continuous function on R with a(0) = 0. Define the 
operator B, in L’(R) by WE&(U) if u, w~L’([w), a(v)EL/,, and 

s wdv-kH(a(4x)) -a(k)).fAx) +w(x)f(x)l dx>O 

for every f E C 7 (R) for which f B 0 and every k E R. Let B be the closure 
of B, in L’(R). That B is an m-accretive operator in L’(R) is an important 
contribution of [lo] where it is also shown that 

-lIh-(I.,<(Z+EB)-I h(x)< Ilh+llLZ a.e. 

for hEL’nL”. By employing the same ideas of the proof of Theorem 2, 
one can show that such results hold for B and, hence, D(B) = L’(R) via a 
technique of [3]. The problem of showing D(B) = L’(R) is left open in 
[IO] and is claimed in [9] to be solved by Benilan in an unpublished 
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paper. One of the implications of this result is that for any initial data 
u0 E L” n L’ the semigroup generated by B provides a solution of the con- 
servation law in the sense of Kruzkov. But we know that B,u = {a(u),} for 
u E D(B,) n L”(R), so the Kruzkov solution agrees with our generalized 
solution for all ZQE L’ n L”. If CI is not continuous the definition of B, is 
no longer meaningful. The preceding development can be regarded as 
assigning a meaning to the Cauchy problem 

u, + a(u), 3 0, 

u(x, 0) = ug 
(3.5) 

and solving the resulting problem at the same time. Finally, the solution of 
(3.5) in the sense of Kruzkov is always unique provided LX is continuous 
and a(O) = 0. 

4. (d/dx),oa IN L’ 

We begin with some suggestive remarks on the system (1.1). For this to 
be resolved as an abstract Cauchy problem of the form (1.4) we would 
need to show that the stationary problem 

u+wy=f in L’(b), w(-03)=0, 

u = w + Ew, l a(u) a.e. x < h 
(4.1) 

has a solution. Implicit in (4.1) is the condition w, E L’(b). Assume for the 
moment that u E L’(b), hence w E W’~‘(6), and denote by 8 the L’ realiza- 
tion of d/dx with domain {WE W’,‘(6): w(-co)=O}. Then (4.1) is given 
by 

u+a(z+&a)-b=f in L’(b), u E a(u) a.e. x < b. (4.2) 

The resolvent of 8 is given by 

(~+&a)-‘u(x)=~~~ exp(y)u(s)ds, x < b, 
Cc 

and for such operators we have the following fundamental results from 
c71. 

THEOREM C. Let L be a densely-defined linear m-accretive operator on 
L’(b). Then L satisfies 

llCu+EL)-’ ul+ll.y,,G Ib+ll.yb)~ ueL’(b), E>O 



158 SHOWALTER AND XU 

tf and only tf’for every maximal monotone graph p with [0, 0] E l? c [w x [w, 
zf Lu E Lp(b), v E L”‘(b), v(x) E fl(u(x)) a.e., then 

s b 

Lu(x) . u(x) dx 2 0. 
--3c 

Furthermore, tf L is such an operator as above, then so also is AI + L, for 
every 1.2 0, E 3 0, where L, = (l/s)(I- (I+ EL))‘) for E > 0. Finally, tf L is 
such an operator and if c1 is a maximal monotone graph with 0 E a(O), then 
L 0 cc is accretive, and (AZ+ L) 0 c1 is m-accretive in L’(b) for each 2 > 0. 

This abstract result fails to resolve (4.1) in two ways. First, the operator 
d,ocl of (4.2) is accretive in L’, but this applies to (4.1) only if t’~ L’(b), a 
regularity assumption not always true. Second, d,o c( is not necessarily 
m-accretive; 2 > 0 is required in Theorem C, whereas we need A= 0 for 
(4.2). Thus, we shall first resolve the stationary problem with E,>O, show 
these solutions converge as ,? -+ 0 to a solution of (4.1), and finally show 
directly that the corresponding operator,-A”, is accretive in L’(b). 

Let f E L’(b), b < + co, and A> 0. From Theorem C it follows that there 
is a unique triple ui E L’(b), vi, E L’(b) and wj. = (I+ E a))’ vi. for which 

(iz+a(I+&a)y)vi+z.4i=f, 0;. E @(UA). (4.3) 

Multiply (4.3) by sgn,(u, + v,), and note that this function belongs at a.e. 
point to sgn(u,) and to sgn(v,), since CI is monotone. Integrate the product 
and use Theorem C to obtain 

A IIvi.ll L1(R) + II”i.ll L1(R) G Ilf II LI(R), -co<R<b. 

Apply the translation rh to (4.3), subtract the result from (4.3), multiply the 
result by sgn,(t, - Z)(nu, + Us) E sgn((r, - I)Av,) n sgn((r, - Z)u,). By an 
integration and application of Theorem C we obtain 

A IIT/zVi. - vill L’(b) + t/T/31 - ulllL’(b) d IlThf -f IILl( h > 0. 

From these two estimates it follows that {uj,} and {nvl} are relatively 
compact in L’(b). Also, dP1 is continuous from L’(b) to C,,(b), so {wA} is 
relatively compact in C,,(b). By passing to a subsequence, which we denote 
by the same notation, we have (l/E)Uj. = f - ui. + (l/s) We - iv, converges in 
L:,,(b), and so we have the limits 

ui + u, Iv, -+ 0, aw, + aw in L’(b), 

and w1 -+ w in C,(b). Thus there exists u E L’(b), w E C,(b) with Dw E L’(b) 
such that V=W+EDWECI(U) a.e. x<b, and u+Dw=f in L’(b). That is, 
u + A”(u) 3 f where A” is given as follows. 
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DEFINITION. f~ A”(u) if u, f~ L’(b) and there exists w E C,(b) such that 
Dw=f and W+EDWECI(U) at a.e. x<b. 

Next we establish directly that A” is accretive, hence, m-accretive in 
L’(b). Forj= 1, 2, let uj+A”(u,)3f;, and let w,EC,(b) with Dw,EL’(b) as 
above with vj = wj + E Dw,. Denote the respective differences by u = u, - u2, 
v=v,-v2, w=w,-wz, and j’= f, - fi. Thus we have 

u+Dw=f, v=ws~Dw, 2), E a(uj) for j=l,2. 

Choose CJ = sgn,+ (u + u) E sgn+(u) n sgn + (u), since LX is monotone, so that 
we have 

u.a+k(v-w)a=fa<f+, a.e. x < b. (4.4) 

In order to estimate the integral of the middle term, we note W(X) = - 
(l/e) j-Y 5 exp((s - X)/E) u(s) ds, and that for each a < b we have 

jfiJ:exp(y)u(s)ds.a(x)dx 

=~ub~[5~exp(~)dxv(s)+dx<{obv(s)+ ds. 

Since v + = v . a, a.e., this shows that 

= Dw(x) . a(x) dx + V(a), 

where 

(4.5) 

v(s) ds . a(x) dx. 
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This is estimated by 

and it converges to zero as a + - co. Thus, by taking the limit in (4.5) we 
obtain 

b 

O< Dw.odx. 
-cc 

From this and (4.4) we have 

s b b 

u+(x) dx< 
--cc 

-mf+bWx> 

and this shows A” is accretive and order-preserving. 

THEOREM 3. Let CI be a maximal monotone graph in I&! with OE a(O), 
E > 0, and b < + co. The operator A” is m-accretive in L’(b) and the 
resolvents, Jz = (I + PA&) ~ ‘, ,u > 0, satisfy the following: J; commutes with 
each translation T,,, h > 0, and 

II(J”,(fi)-J~(f~))+l~~‘(b)~ /(.fi-fd+h(b)~ fly fi E L’(b); (4.6a) 

IIJ;(f III U(b) < ll.fil U’(b), fELP(b), lGp6 +co; (4.6b) 

- Ilf- II L=(b) 6 J”,(f)(x) G Iif’ II Lrtbj, a.e. x < b. (4.6~) 

ProoJ: The first part is finished for b < 00. For the case b = + 00, the 
direct proof of (4.6a) stands as it is, while the existence follows easily by 
noting the preceding convergence in L’(b), C,(b) for every b > 0, the 
domain of dependence of u1 on f, and the dominated convergence theorem. 
By [7, Lemma 33, (4.6b) will follow from (4.6~). Thus it suffices to prove 
(4.6~) in the case p = 1. 

For this, let f E L’(b) with k = II f' /I La < cc and u + A”(u) 3 f. That is, we 
assume 

ue L’(b), w E C,(b), o~w+eDw, 

u+Dw=f, and via, a.e. x<b. 
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If u(x) <k, a.e. x < 6, we are done. Otherwise k E dam(a) and so q,(k) E lJ& 
Choose 

a=sgnz(u-k+v--cc,(k))Esgn+(u-k)nsgn+(o-a,(k)) 

and note then that 

(u-k)a++w)r&(j-k)+ o=O, a.e. x < b. 

Proceeding as above, we obtain for a < b 

a(x) dx 

=jjh($~~exp(~)(r(J)-u,(k))ds-exp(~)~,,(k))cr(x)dx 

<]ub~~~exp(~) (u(S)-qJk))+ dsdx 

< s b (u(s) - a,(k)) + ds. 
(I 

Thus after deleting &u,(k) g(x) from the integrand we have 

in which we let a + - co and obtain 

s b (u-k)+<O. 
-cc 

This implies u(x) Q k a.e., and finishes the proof of Theorem 3. 

THEOREM 4. Let c( be a maximal monotone graph in Iw with 0 E a(O) and 
b < + co. Assume b < + co or u(O) = (0). Let A” be given as above for E > 0 
and let A be given as in Section 2. Then A” + A; that is, 

lim (I+~A’)~lf=(Z+~A)~‘f, ,u > 0, 
E-0 

j-e L’(b). (4.7) 

Proof: Consider the case b < + 00. For E > 0, let uE E L’(b), W&E C,(b) 
with vE= w”+ E DW’E a(~.?) and u”+ DwE= f in L’(b). From the proof of 
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Theorem 3 we obtain 

s 
h I T,,M&- UEI < b b,f-fl> h > 0, 
-3c -0z 

so it follows that uE has a subsequence U” + u in L’(b). It follows from 
above that Dw”’ -+ Dw in L’(b) and wE’ + w in C,(b), hence, vE -+ w in L:,, 
and we have 

u+Dw=f in L’(b), WEN(U) a.e. x<b 

by Lemma 0. That is, (I+ A)(u) 3f. By uniqueness, the original sequence 
U’ converges to u as desired. This proves (4.7) with ,u = 1; the case ,n > 0 is 
immediate from this. 

In the case of b = + co, cc(O) = (0) it suffices to show, as in the proof of 
Theorem 2, that 

lim I +x IUEJ =o, uniformly in E > 0. 
R++cc R 

From the pointwise estimates 

J;(f-)<J;(f)- <o<J;(f)+ <J”,(f”), 

it follows we need only consider the case of f > 0. But then we have, 
successively, 

l.8 > 0, VE > 0, w”>O. 

Moreover, this shows 

jm uxjm u'+w"(+a)=j= j-. --m -m -cc 

By standard arguments based on uniqueness of U, we may assume U’ + u 
a.e. on If&’ and use Fatou’s Theorem to show 

2.r u < lim inf I m (d+u-IS-UI) 
--oo E’O -K 

and now (2.7~) implies lim,,, IIu~-uII~I(~)=O. 
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5. REMARKS 

(i) The continuous dependence on c1 of the operator A” follows 
immediately from our preceding proofs. 

THEOREM 5. For each n = 1, 2, . . . . + cx), assume a,, is a maximal 
monotone graph in R with 0 E a,,(O), and assume b < + 00. Let E > 0 and A”, 
be the m-accretive operator in L’(b) constructed from a, as in Section 4. If 
a,-, in R, then A”, + A”, in L’(b). 

The preceding proofs do not suffice for the case b = + 00 since we do not 
haveS(Z+A”)-if=Jffora>O. 

(ii) Suppose the maximal monotone graph a is bounded, i.e., it maps 
bounded sets into bounded sets, and that it grows at most linearly near 
zero. That is, suppose there is a pair r > 0, K > 0 such that 

I4 G Klul for all [u, u] Ea, IuI dr. (5.1) 

Then for UE L’(b)n L”(b) and measureable VECI(U), it follows 
VE L’(b) n L”(b). The L” claim is clear; for the L’ claim, set 

E,= {x<b: [u(x)/ <r}, E,= {x<b: lu(x)l >r} 

and note that 

IIvlI.b,,,=JE, lvl +jE I4 $KIE, IUI ++=s, lul. (5.2) 
, r 

It follows that 

L’(b) n L”(b) c dom(a(Z+ E 8))’ oa) c dom(A”), 

so the domain of A” is dense in L’(b). 

(iii) Now let the maximal monotone a be a continuous function on 
R which satisfies (5.1). Let USE L’(b)n L”(b) and denote by u the 
generalized solution of 

u’(t) + A”(u(t)) = 0, O<t<T, u(0) = uo. (5.3) 

Thus, u = lim, _ o ug in C(0, T: L’(b)) where u5 is the solution to 

$u,(t)-u,(t-@)+A’(&t))=O, O<t<T, h(t) = uo, t d 0, 

5ow33:1-11 
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according to Theorem A, and we have 

IIua(t)ll U’(b) G IiUOIILp(b), O<t<T, IQ< +a. 

by Theorem 3. By splitting the domain of integration as in (5.2) we obtain 
for each R > 0 

M= llUllLX. 

Thus tx(ug) -+ CC(U) in L’ and it follows that 

u’(t) + qz+ & a)-’ a(u) = 0 in L’(0, T; L’(b)) (5.4) 

by our preceding remark (ii) and the continuity of a, on L’(b). Thus, when 
CI is continuous and satisfies (5.1), the generalized solution of (5.3) with 
uOE L’ n L” is a strong solution in W’,‘(O, r, L’(b)) of (5.4). 
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