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1. Introduction

We consider the limiting form of a system of equations describing incompressible fluid flow in a fully-
saturated region Q2 which consists of two parts, a porous medium €2; and a very narrow channel 2§ of width
€ > 0 along part of its boundary, I' = 09 N 9€25. That is, we have Q¢ = Q; UT' U Q5. The filtration flow
in the porous medium is governed by Darcy’s law on €1 and the faster flow of the fluid in the narrow open
channel by Stokes’ system on §2§. For simplicity, we assume that the channel is flat, that is, Q§ =T x (0, €),
where I' € R"~1, R"~! is identified with R"~! x {0} C R", and T = 9Q N 99 is the interface. See Fig. 1.
We assume that 0Q; — T is smooth. The Darcy and Stokes systems have very different regularity properties,
and both the tangential velocity and pressure of the fluid are discontinuous across the interface, so the
analysis is delicate. Our goal is to establish the existence of a limit problem as the width ¢ — 0 and to
characterize it. This limit is a fully-coupled system consisting of Darcy flow in the porous medium €2; and
Brinkman flow on the part I" of its boundary.
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Fig. 1. The porous medium Q; below the thin channel QF.

The Darcy—Stokes system above has two types of singularities: the geometric one coming from the nar-
rowness of the channel O(¢e) with respect to the dimensions, and the physical one of high fluid flow velocity
O(1/e) in the channel with respect to the porous medium. These singularities introduce multiple scales in the
system which have an impact on the numerical simulation. Some of these consequences are ill-conditioned
matrices, problems of numerical stability, poor quality of the numerical solutions and high computational
costs. Earlier modeling of fractures was based on Darcy—Darcy models for slower flow in ‘debris-filled’ chan-
nels [10,22,33,24,25,34]. Since the original analytic and numerical treatment of the Darcy—Stokes system
[18], much progress has been made to handle such issues [5,13,11,7,14,23], and for the use of Brinkman flow
to couple numerically the Darcy and Stokes flow models [35,17,29,12]. See especially Quarteroni et al. [19]
for additional issues, references and perspectives.

The Brinkman system has nothing to do with the usual models of porous media flow, but rather describes
Stokes flow through a sparse array of particles for which the porosity is more than 0.8 [16,8,9,26]. This
requirement is highly restrictive since most naturally occurring porous media have a porosity less than 0.6.
Lévy [20,21] showed that the Brinkman system holds only for arrays of particles whose size is precisely of
order n?, where << 1 is the distance between neighboring particles. Larger particles impede the fluid flow
sufficiently to be described by a Darcy system, and smaller particles do not change the flow from the Stokes
system. Allaire [2-4] proved and developed this homogenization result by means of two-scale convergence,
and Arbogast & Lehr [6] confirmed that a Darcy—Stokes vugular medium homogenizes to a Darcy medium.
But in the situations considered here the singular geometry of the problem with small € > 0 keeps all of
the fluid in the channel very close to the interface where it is slowed by viscous resistance forces from the
porous medium. This suggests that there is a very narrow region along the interface between Stokes flow
and a porous medium where the fluid velocity is well approximated by a Brinkman law in the tangential
coordinates. (Of course, the normal component of velocity is determined independently by the conservation
of fluid mass across the interface.) The convergence of the e-model established below provides an explanation
for the success of numerical approximations that use an intermediate Brinkman system to connect Darcy
and Stokes flows across an interface by adjusting the coefficients.

Our model describes two fundamental situations. The first is the rapid tangential flow near the bound-
ary of a porous medium where the porosity becomes large due to the inefficiency of the packing of the
particles of the medium. If the particles in this boundary channel are sufficiently sparse, the less im-
peded flow begins to follow this Stokes-like model in the substantial space between particles. See Nield
& Bejan [27] for additional discussion and perspectives. The second and more common situation is ob-
tained by reflecting Q¢ about the outer wall of the channel, T" x {€}. This provides a model for a narrow
interior fracture of width 2e in a porous medium. (See Remark 1.) Such a fracture is assumed to be
open, so fluid flow follows the Stokes system; debris-filled fractures have been modeled as regions of Darcy
flow with very high permeability [10,22,24,25]. In the limiting problem below, the fracture is described by
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Fig. 2. The domain of reference for asymptotic analysis.

Brinkman flow in tangential coordinates coupled on both sides to the surrounding Darcy flow of the porous
medium.

In this work we present the full asymptotic analysis for this coupled Darcy—Stokes system in order to
derive a new model, free of singularities. The limit problem consists of a Darcy-Brinkman fully coupled
system with Darcy flow on the original porous medium and Brinkman flow on the surface approximating
the adjacent channel or internal fracture; see Fig. 2. The spaces of convergence will be found and the
convergence of solutions will be established. It is worthwhile to stress that the method is remarkably simple
with respect to other techniques as it uses only scaling, standard weak convergence methods and general
Hilbert space theory. It is precisely this simplicity that gives the method its power and success in handling
simultaneously the asymptotic analysis, the multiple scales and the substantially different structures of
Darcy and Stokes systems. In particular, we obtain explicitly the correspondence between the coefficients
in the Beavers—Joseph—Saffman interface condition and those in the limiting Brinkman system.

1.1. Notation

We shall use standard function spaces (see [32,1]). For any smooth bounded region G in R with boundary
JG, the space of square integrable functions is denoted by L?(G), and the Sobolev space H!(G) consists
of those functions in L?(G) for which each of the first-order weak partial derivatives belongs to L?(G).
The trace is the continuous linear function v : H'(G) — L%(0G) which agrees with restriction to the

= w|8G on smooth functions. Its kernel is H}(G) =f {w € HY(G) : v(w) = 0}. The
def

trace space is H'/2(0G) = ~(H'(G)), the range of v endowed with the usual norm from the quotient

boundary, i.e., y(w)

space H'(G)/H}(G), and we denote by H~'/2(d@) its topological dual. Column vectors and corresponding
vector-valued functions will be denoted by boldface symbols, e.g., we denote the product space [Lz(G)] N by

L?(G) and the respective N-tuple of Sobolev spaces by H!(G) oef [H(G)] N Bach w e H! (G) has gradient
Vw = (g—z, e a‘rl—ljuv) € L2(G). We shall also use the space Hy;y (G) of vector functions w € L?(G) whose

weak divergence V - w belongs to L?(G). Let n be the unit outward normal vector on dG. If w is a vector
function on G, we denote its normal component by w,, = v(w) -n and the normal projection by w,n. The
tangential component is w2 = w — w,, n. For the functions w € Hgi,(G), there is a normal trace defined
on the boundary values, which will be denoted by w-n € H~'/2(dG). For those w € H(G) this agrees
with v(w) - n. Greek letters are used to denote general second-order tensors. The contraction of two tensors

is given by o : 7 = ). . 0;;7;;. For a tensor-valued function 7 on 0G, we denote the normal component

2]
(vector) by 7(n) o=f > Tijn; € R, and its normal and tangential parts by (7(n))-n =7, oef > j Tijnin;

and 7(n)r . 7(n) — 7,1, respectively. For a vector function w € H'(G), the tensor (Vw);; = g;’i is the

gradient of w and (S(W))Z.j = %(g;“’f + %) is the symmetric gradient.
i i
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Next we describe the geometry of the domains to be used in the present work; see Fig. 1 for the case N = 2.
The disjoint bounded domains 2; and Q5 in RY share the common interface, T ef 00,N00Q5 € RV~ x {0},

and we define Q¢ % Q. UT US. For simplicity of notation we have assumed that the interface is flat and,

moreover, that the domain QS is a cylinder: Q5§ o« (0, €). We denote by n(-) the unit outward normal

vector on 0€); and on 025 —I'. The domain €2, is the porous medium, and 2§ is the free fluid region. We
focus on the case where €25 is the lower half of a symmetric narrow horizontal fracture of width €, 0 < € < 1,
and €27 is the porous medium below the fracture. By modifying boundary conditions on I' 4 €, we recover
the case of a free-fluid region adjacent to (a flat part of) 99;.

For a column vector x = (xl, cevs TN_1y xN) € RN we denote the corresponding vector in R¥ ~! consisting
of the first V—1 components by x = (a:l, e xN_l), and we identify RV =1 x {0} with RN ~! by x = (X, zy).
For a vector function w on I we see w, = w is the first N —1 components and w,, = wy is the last component
of the function. The operators Vi, Vr- denote respectively the RN ~!-gradient and the RY~!-divergence in
directions tangent to I', i.e. Vp = (%, e L), Vr- = ( o . L)

Y 0T N1 Oz’ Y 0T N1

1.2. The equations
We determine the fluid flow through the porous medium Q4 by the Darcy system, i.e.

V'V1 Zhl, (18‘)
ov +Vp' =0, inQ. (1b)

The functions p', v!

are respectively, the pressure and filtration velocity of the incompressible viscous fluid in
the pores. The resistance tensor Q is the shear viscosity p of the fluid times the reciprocal of the permeability
of the structure. The flow of the fluid in the adjacent open channel € is described by the Stokes system

32,28]

V-vi=0, (2a)
—V.-o?+Vpi="1, (2b)
o =2ep &V, inQ. (2¢)

Here, v2, 02, p? are respectively, the velocity, stress tensor and the pressure of the fluid in S, while £(v?)
denotes the symmetric gradient of the velocity field. Among the equations above, only (1b) and (2¢) are
constitutive and subject to scaling. Darcy’s law (1b) describes the fluid on the part of the domain with fixed
geometry, hence, it is not scaled. The law (2c¢) establishes the relationship between the strain rate and the
stress for the fluid in the thin channel, therefore it is scaled according to the geometry. Finally, recalling
that V - v2 = 0, we have

V.0?=V-[2ep&(v’)] = epVv-Vv>. (3)
This observation transforms the system (2a), (2b) and (2¢) to the classical form of Stokes flow system.
1.8. Interface conditions
The interface coupling conditions account for the stress and mass conservation. For the stress balance,

the tangential and normal components are given by the Beavers—Joseph—Saffman (4a) and the classical
Robin boundary condition (4b) respectively, i.e.
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o2 =epvVav2, (4a)
o2 —p*+p'=av'-nonT. (4b)

In the expression (4a) above, €

is a scaling factor destined to balance out the geometric singularity intro-
duced by the thinness of the channel. In addition, the coefficient o > 0 in (4b) is the fluid entry resistance.
In the present work it is assumed that the velocity is curl-free on the interface, so the conditions (4a) and

(4b) are equivalent to

0 0
eua—nvi:euﬁvizgﬁ\/ V2, (5a)
N

ov? ov?2
cw(y ) P =g - =avinon (5b)

The conservation of fluid across the interface gives the normal fluid flow balance

viin=v?*-nonTl. (5¢)

The interface conditions (5) will suffice precisely to couple the Darcy system (1) in €7 to the Stokes system
(2) in Q5.

In the homogenization to Darcy flow of a Stokes-solid region with length scale e, both viscosity p and
permeability K are scaled by 2. This maintains the flow rate while the volume of pore space decreases by €3
(see [21]). Here, only the width of the fracture is scaled by e. In order to maintain the flow rate and two-way
coupling, it is sufficient to scale the viscosity and permeability by e, so the ratio @ remains constant, and
the tangential friction by an extra power, €2. Therefore, the scaling of Equations (2¢)/(3) and (4a) follows.

1.4. Boundary conditions

We choose the boundary conditions on 0 Q¢ = 082y U 0§25 — I in a classical simple form, since they play
no essential role here. On the exterior boundary of the porous medium, 92y — I', we impose the drained
conditions,

pt=0 on 99 —T. (6a)

As for the exterior boundary of the free fluid, 25 — I', we choose no-slip conditions on the wall of the
cylinder,

vZ=0 on JT x (0,¢). (6b)

On the top of the cylinder I+ ¢ def {(5, €): % € F}, the hyper-plane of symmetry, we have mixed boundary

conditions, a Neumann-type condition on the tangential component of the normal stress

ov:  ov? vz
_ . - =0 r 6
On (an n)n Ozy onl+e (6c)
and a null normal flux condition, i.e.
vZin=vi=0 onl +e (6d)

Remark 1. The boundary conditions (6b) and (6¢) are appropriate for the mid-line of an internal fracture
with symmetric geometry. In that case, the interface conditions (5) hold on both sides of the fracture. If
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is an adjacent open channel along the boundary of €, then we extend the no-slip condition (6b) to hold
on all of 90025 — T

Remark 2. For a detailed exposition on the system’s adopted scaling namely, the fluid stress tensor (2c¢) and
the Beavers—Joseph—Saffman condition (4a), together with the formal asymptotic analysis see [23].

1.5. Preliminary results

We close this section by recalling some classic results.

Lemma 1. Let G C RY be an open set with Lipschitz boundary, let n be the unit outward normal vector on
dG. The normal trace operator u € Hyiy(G) — u-n € H-'/2(0G) is defined by

<u "1, ¢>H*1/2(ac>, H/2(0G) = / (u Vo+ V- uqb) dr, ¢e Hl(G)' (7>
G

For any g € H™Y2(0G) there exists u € Haiy(G) such that u-n = g on G and ||[u|m,. () <

K||gllgr-1/2(9¢y, with K depending only on the domain G. In particular, if g belongs to L?(0G), the function

u satisfies the estimate ||ulle,, (o) < Kllgllo,oc-

Proof. See Lemma 20.2 in [31]. O

We shall recall in Section 2 that the boundary-value problem consisting of the Darcy system (1), the
Stokes system (2), the interface coupling conditions (5) and the boundary conditions (6) can be formulated
as a constrained minimization problem. Let X and Y be Hilbert spaces and let A: X — X', B: X — Y’
and C : Y — Y’ be continuous linear operators. The problem is to find a pair satisfying

(x,y) eXxY: Ax+By=F inX,
—Bx+Cy=F inY
with F; € X’ and F» € Y'. We present a well-known result [15] to be used in this work.

Theorem 2. Assume that the linear operators A: X —- X', B: X = Y’',C:Y — Y’ are continuous and

(i) A is non-negative and X-coercive on ker(B),
(ii) B satisfies the inf-sup condition

inf sup |Bx(y)l

— >0, (9)
veYxex [xlIx lylly

(iii) C is non-negative and symmetric.

Then, for every Fy € X' and Fy € Y’ the problem (8) has a unique solution (x,y) € X x Y, and it satisfies
the estimate

1x[lx + llylly < e(llFrllx + ([ Fallv) (10)

for a positive constant ¢ depending only on the preceding assumptions on A, B, and C.
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Several variations of such systems have been extensively developed, e.g., see [30] for nonlinear degenerate
and time-dependent cases.

2. A well-posed formulation

In this section we present a mixed formulation for the problem on the domain ¢ described in Section 1
and show it is well-posed. In order to remove the dependence of the domain Q€ on the parameter € > 0, we
rescale Q5 and get an equivalent problem on the domain Q1.

The abstract problem is built on the function spaces

def{ €eH' (Q5):v=00n9T x (0,6), v-n=0o0onT +€}, (11a)

xe et [vEv?] € Hy () x X5 : vl -n=v?-n onF} = {v € Hyio () : v € X;}, (11b)

v ¥ 12009, (11c)
endowed with their respective natural norms. We shall use the following hypothesis.

Hypothesis 1. It will be assumed that g > 0 and the coefficients § and « are nonnegative and bounded
almost everywhere. Moreover, the tensor Q is elliptic, i.e., there exists a Cg > 0 such that (Qx)-x > Cg||x]|?
for all x € RV.

Proposition 3. The boundary-value problem consisting of the equations (1), (2), the interface coupling con-
ditions (5) and the boundary conditions (6) has the constrained variational formulation

[vf,pe] e X xY*

/ (Qvhe-w! —ph V. .wh)de+ / (epV V> —p>6 ) : Vw’ didey (12a)
Q Q5
Jroz/(vz’6 ‘n) (W2'1’1) dSwL/ezﬂ\/_vi’6 ~Wid5:/f2’€'w2d5d9:1\,,
r r 25
/V-Vl’6 ©! dx+/V-v2’€go2 dz dz :/hl’egol dz, (12b)
Q Qf Q

for all [W, <p} € X xY°.

Proof. Let v = [VI’E,VQ’E], p = [pl’e p> } be a solution and choose a test function w = [w!, w?] € X¢.
Substitute the relationship (3) in the momentum equation (2b) and multiply the outcome by w?. Multiply
the Darcy law (1b) by w!. Integrating both expressions and adding them together, we obtain

/(Qvl’e- 166 S )dac—i—/ equz—p2’€5):Vw2dx

Q

‘n-w'+€(Vv*(n)) w?—p*° (W2~n))d5’:/f2-w2dx. (13)

5

_|_
’—J\
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Since w satisfies the admissibility constraint (5¢), w! - n = w? - n on I, the interface integral reduces to

ove . .
/(e 7n w2 4 (pl’ —p* ) (vv1 : n)) ds.

T

Decomposing the velocity terms into their normal and tangential components, we obtain

[{eCa ) v (G m) +rt =) o} as

T

Therefore, the interface conditions (5a) and (5b) yield
/ggﬁ\/_vi’€ w2 dS + a/(vl’e-n) (wl-n)dS7
r r

and inserting this in (13) yields the variational statement (12a). Next, multiply the fluid conservation equa-
tions with a test function ¢ = [p!, ¢?] € L%(QF), integrate over the corresponding regions and add them
together to obtain the variational statement (12b). Conversely, by making appropriate choices of test func-
tions in (12) and reversing the preceding calculations, it follows that these formulations are equivalent. O

2.1. The mized formulation

Define the operators A€ : X¢ — (X€¢), B¢ : X¢ — (Y¢)' by

Acv(w) déf/(Qvl -w') cl:v—l—oz/(v1 -n) (w'-n)dS

951

+/€25\/§v§ - wo dS+/(€MVV2 P Vw?) didey, (14a)

r Q5

def

Bv(p) = /V-v1 o! dx—|—/V-v2<p2d§de, (14b)

o Q5
for all v,w € X, p € Y°.

These are denoted also by matrix operators

Q+Yn@n 0
A = 15
( 0 e~ BV O + e(V)’uV) (15)

e (V- 0\ [div 0
B‘(o V->_<0 div>' (15b)

With these operators, the variational formulation (12) for the boundary-value problem takes the form

and

[ve,pe] EXExYE: A°vE — (Be)/pe _ f2,e7

(16)
Bevt = hl,e.
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Here, the unknowns are v* def [vie v2e] € X€, p¢ def [phe, p?€] € Y€. Next, we show that the Problem (16)

is well-posed by verifying that the hypotheses of Theorem 2 are satisfied.

Lemma 4. The operator A€ is X¢-coercive over X N ker(B€).

Proof. The form A°v (v) 4+ / (V- v)2 is X¢-coercive, and V - v|q, = 0 whenever v € ker(B€). O
1951

In order to verify the inf-sup condition for the operator B¢ we introduce the space

def

F(Q) = {veHY(Q):v=00n095 — T}, (17)
endowed with the H*(Q2¢)-norm.

Lemma 5. The operator B¢ has closed range.

Proof. Since F(Q2¢) C X¢ and the Poincaré inequality gives a constant C' > 0 such that [|v|x < C||v| g1 (e
for all v € F(Q¢), we have

B B
mf osp 2V o sp BV
e L) vex [VlxllellLzo ~ eer299) v eriae) IVIxIlellLz e
1 Be
> inf sup v(®) . (18)

C ¢ eL2@9) y crae) Va0 lell 20

The last term above is known to be positive (see Theorem 3.7 in [15]), since it corresponds to the inf-sup
condition for the Stokes problem with mixed boundary conditions:

~ V. (VW) +Vg=g, V-w=0in Q, (19)
ow
w=0 on 005 — T, ,ua—n—qnzgz on 00° — 993, (20)

and forcing terms g1 and go satisfying the necessary hypotheses of duality. O
Theorem 6. The Problem (16) is well-posed.

Proof. Due to Lemmas 4 and 5 above, the operators A¢ and B¢ satisfy the hypotheses of Theorem 2 and
the result follows. O

2.2. The reference domain

The solutions { [v¢, p¢| : € > 0} to the Problem (12) (equivalently Problem (16)), have different geometric
domains of definition and therefore no convergence statements can be stated. In addition, the a priori
estimates given from the well-posedness of the Problem (16) depend on the geometry of the domain where the
problem is defined. Therefore, a domain of reference will be established; since the only part that is changing
is the thickness of the channel, this suffices for the appropriate change of variable. Given x = (Z,zy) € Q5,

) 10

define x5 = €z, hence o = 35 see Fig. 2. For any w € X§ we have the following changes on the

structure of the gradient and the divergence, respectively,
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[VT WT] 1 0, W
VW(%,@‘N) = ; (§32>7 (21&)
(VT WN)/ < 0wy

V. -w(Z,zy) = (VT - W+ %@WN)(%, 2). (21b)

Taking in consideration (21a), (21b) and combining it with (12) we obtain a family of e-problems in a
common domain of definition (see Fig. 1) given by 2 def Q1 U Qo, where Q1,0 C R? are bounded open
sets, with Qo X (0,1) and T' = 90y N 9y C R2. Letting I' + 1 o=f (@,1) : € I'}, the functional

setting is now independent of € and defined by

X, % {veH (Q):v=00ndlx (0,1), v-n=00onl+1},
x def v, v?] € Hyiy () x Xo: vl -n=v? nonT} = {v € Hyy (Q) : v2 € Xn}, (22)
Y € 2(q).

Moreover, we have the following result.

Proposition 7. Under the change of variable (Z,xy) — (T,zx5)1q, +(T,€2)1q,, the Problem (12) is equivalent
to the corresponding problem

[ve,pl e X xY:

/QVI’E ~wlde — /pl’6 V. -wlde — E/pz’E Vr- Wi drdz — /172’E azwzzv dz dz
95} 1971 Q2 s

+62/,uVT vZE Vr w2 dT dz +/uazv§,e. 0. w2 dT dz

Q Q
’ ’ (23a)
+ €2 /,uVTV?\;E - Vrw? dT dz + /,uc’?zvlzv’6 O, w2 dT dz
QQ Q2
+a/(v1’€-n) (w! ~n)dS+62/ﬂ\Fv%€-widS:e /f2’€~w2d5dz,
r I Q2

/V . vl’egol dr + € / Vr - V?’E g02 drdz + /8ZV]2\;6 @2 drdz = /hl’ € gal dzx,
Ql QQ QQ Q1

for all [w,®] e X XY, (23b)
defined on the common domain of reference 2.
Proof. The proof follows from direct substitution together with the identities (21a) and (21b). O
Remark 3. In order to avoid overloaded notation, from now on, we denote the volume integrals by le F=

le F dzx and sz F = sz F dZ dz. The explicit notation fQ2 F d% dz will be used only for those cases where
specific calculations are needed. Both notations will be clear from the context.
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Proposition 8. The Problem (23) is a weak formulation of the strong form

Qv+ Vple=o0, (24a)
V.vhe=ntc in Q, (24b)

eVrp*>© — & Vp - pNVp v — 0, 410, vi© = ef%’ ‘, (24c)
0. p* —EVr - uVpvE — 0, 1n0,vi = eff\,’ <, (24d)
eVr V2 L O.vE =0 in Qo (24e)

epnd, vt —p* £ phf=avc.n, (24f)

€L 8(;;12175 = epd, v =BVavEe, (24g)

v . n=v*.n on T, (24h)

ph =0 on 0Q —T, (24i)

v =0 on OI x(0,1), (24j)

v .n=vi =0, (24k)

8(;/31*6 =pd.vi*=0 on T +1. (241)

Sketch of the Proof. The strong Problem (24) is obtained using the standard procedure for recovering
strong forms. First the strong equations (24a), (24b), (24c), (24d) and (24e) are recovered by testing the
weak variational Problem (23) with compactly supported functions. Next, the standard integration by parts
with suitable test functions recovers the boundary conditions (24i), (24j), (24k), (241) and the interface
conditions (24f), (24g), respectively. Finally, the admissibility constraint (24h) comes from the modeling
space X defined in (22). O

3. Convergence statements

We begin this section recalling a classical space.

Definition 1. Let Q, % I x (0, 1), define the Hilbert space

H(0.,0) © {ue L2(Q) : 0.u € L)}, (25a)

endowed with the inner product

def
<u7U>H(82792) = /(uv—i—azuazv)dx. (25b)
Qa

Lemma 9. Let H(0,,$s) be the space introduced in Definition 1, then the trace map u — u’r from H (9., )
to L3(T') is well-defined. Moreover, the following Poincaré-type inequalities hold in this space

lullor < V2 (o, + (12 lly g, )- (268)
lullgq, < V2 (l10: ully g, + lullor), (26D)

for alluw € H(D,,s).



F.A. Morales, R.E. Showalter / J. Math. Anal. Appl. 452 (2017) 1332-1358 1343

Proof. The proof is a direct application of the fundamental theorem of calculus on the smooth functions
C*(93) which is a dense subspace in H(9,,Q2). O

In order to derive convergence statements, it will be shown, accepting the next hypothesis, that the
sequence of solutions is globally bounded.

Hypothesis 2. In the following, it will be assumed that the sequences {f?€ : € > 0} C L2(2) and {h'€ :
€ >0} C L?(Q4) are bounded, i.e., there exists C' > 0 such that

| £ <C, |hte <C, for all € > 0. (27)

lo.c lo.c

Theorem 10. Let [v¢,p¢] € X x Y be the solution to the Problem (23). There exists a K > 0 such that

2 2 2
VL, 192 g, + 05201

(28)
e Vrviellog, + 103 lloq, + V3 llo.0 + llevi<llsr < X, for all ¢ > 0.
Proof. Set w = v in (23a) and ¢ = p© in (23b); add them together to get
/Qvl’ﬁov16 /MVT(ev ) : Vp(evk )+/uazvi’606zvi’e
Ql Qz QQ
62/ p Ve Vv + / POV 0vy© (29)
QQ QZ
+ a/ (vl’E . n) (vl’€ . n) ds + /62 ﬂ\ﬁvi’e -vi’e dS = ¢ /fQ’E Sv2e 4 /hl’epl’g.
r r Q2 2

The mixed terms were canceled out on the diagonal. Applying the Cauchy—Schwartz inequality to the right
hand side and recalling the Hypothesis 1, we get

92 g, + 19 (ev2 [ g, + w2l g, + e Vvl g, + v,
I el < (182l v g, + [ 2 9H). 30
|95

The summand involving an integral needs a special treatment in order to attain the a priori estimate.

YRy s T T
Q

< Ve llog, 17 lon, = CllRV “Nlog 1B “log, < CIV*Nloa, (D

The second inequality holds due to Poincaré’s inequality given that p'* = 0 on 9€); — I, as stated in
Equation (24i). The equality holds due to (24a). The third inequality holds because the tensor Q and the
family of sources {h'€ : e > 0} C L2(€;) are bounded as stated in Hypothesis 1 and (27), Hypothesis 2
respectively. Next, we control the L?(3)-norm of v*¢. Recalling that v*¢ € [H(E)Z, Qg)]N then, a direct
application of Estimate (26b) implies

Vo < V2 ([10:v2lg 0, + IV*llor ). (32)
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Combining (31), (32) and the bound (27) from Hypothesis 2 in (30) we have

+ ll0-vE o,

< O[IE> Y., V2 (1= (€Yo 0, + 1V o) + CI o,

< 0110 v3 o, + 109> oo, + V2 Mo o IV Mo+ 1M, )-

+ HVT<6 vi’g) >

lo.e, +[le vrvy

v 03l + V3 Mo+ llevi o

lo.e, Mo o

Using the equivalence of norms || - ||1, || - ||2 for 5-D vectors yields

+ ||6 VTV?\,76 >

+ HVT (e Vi’e)H(Q),QQ + Hﬁzvi’e : Ho Qs

HO,Q2 + H(’) v

[l vl + leviells
[v TN llo,r T €V llor

lo e, o

< 0032 2 o+ 10w | o 4 vl W2l )2 o )
< O{ V|2 0, + 1D (ev2) |, + 029,
€Ty o, 102 12 g, + VA2 o+ lleve 2}
The expression above implies the existence of a constant K > 0 satisfying the global Estimate (28). O

In the next subsections we use weak convergence arguments to derive the functional setting of the limiting
problem.

3.1. Weak convergence of velocity and pressure
We begin this part with a direct consequence of Theorem 10.

Corollary 11. Let [v¢,p¢] € X x Y be the solution to the Problem (23). There exists a subsequence, still
denoted {v®: e > 0} for which the following hold.

(i) There exist v! € Haiy(Q1) and v2 € [Hl(Qg)}Nfl such that

vie o vt weakly in Hai (1), (33a)
eva® —v2  weakly in [H' (Qg)]Nﬁl, strongly in |:L2(QQ)]N71 (33b)
(ii) There exist £ € H(0,,2) and n € [LQ(QQ)]AL1 such that
2,e . 2 N-1 . 2 N-1
0.vy* —n weakly in [L*()] . 0.(evZ) — 0 strongly in  [L*(Qs)] , (34a)
vi© = ¢ weakly in L*(Q2), (evy®) — 0 strongly in H(D., ), (34b)
moreover, £ satisfies the interface and boundary conditions
r=v'-nlr, §(z,1) =0. (34c)

iii) The limit function v2 satisfies that (see Fig. 3
T

2 =vi(@). (35)
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g Qs » vi(@o,2)-er A vA(@o)-er
r'+1 s
Vi = (vi@), V(& 2))
vZ =v24(Z,0)(1—z) ! e
o Kt Vh@02) 4 VA@o2) = 6@, %)
; z
(v (@), p' ()] (%o, 20) i
h (%o, 2) P*(Zo)
G ) o f—z
.(in,z.-.) (&#o,1) o
(a) Limit Solutions in the Domain of Reference. (b) Velocity and Pressure Schematic Traces for

the Solution on the hyperplane {(z,z) : & = Zo }.

Fig. 3. Figure (a) shows the dependence of the limit solution [u,p] according to the respective region. Figure (b) depicts some
plausible schematics of the velocity and pressure traces on the hyperplane {(Z,2) : T = Zo }.

Proof.

(i) Due to the global a priori Estimate (28) there must exist a weakly convergent subsequence and v2 €
[Hl(ﬂg)]N*1 such that (33b) holds; together with v! € Hg;,(€21) such that (33a) holds only in the
weak L?(§)-sense. Because of the Hypothesis 2 and (24b), the sequence {V - v} : e > 0} C L?(£;)
is bounded. Then, there must exist yet another subsequence, still denoted the same, such that (33a)
holds in the weak Hg;y(€2;)-sense and the first part is complete.

(ii) For the higher order terms 8,v>¢, 9,v2*, in view of the estimate (28), there must exist 7 € [L%(2)] Nt
for which (34a) holds. Next, the estimate (28) combined with (26b) implies that {v,2\,’6 te>0}isa
bounded sequence in H(J,,$3), so (34b) holds. Moreover, since the trace applications viE s vE©
and v&° s v2© i1
concludes the second part.

(iii) The property (35), is a direct consequence of (34a). Hence, the proof is complete. O

r
are continuous in H (8., Q) and vy(Z,1) = 0, the properties (34c) follow. This

Lemma 12. Let [vf,pﬁ] € X xY be the solution of (23). There exists a subsequence, still denoted {p6 te> O}
verifying the following.

(i) There exists p* € H'(Qy) such that
p = pt weakly in H' (), strongly in L*(Q). (36)
(ii) There exists p* € L*(Q) such that
p>© — p?  weakly in L*(Qy). (37)
(iii) The pressure p = [pl,pz] belongs to L?(2).
Proof.
(i) Due to (24a) and (30) it follows that

VP o0, = IVQV¥©lpq, <€
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(iii)
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with C' > 0 an adequate positive constant. From (24i), the Poincaré inequality implies there exists a
constant C' > 0 satisfying

9, < CIVP g foral >0 @

lo.e,

Therefore, the sequence {p'€: ¢ > 0} is bounded in H' () and the Statement (36) follows directly.
In order to show that the sequence {p*€ : € > 0} is bounded in L?(f)y), take any ¢ € C§°(£22) and

define the auxiliary function
1
Lof / 6(F, 1) dt. (39)

By construction it is clear that |||, 2 < < C¢llo,0,- Since gjlp e L*(I) C H‘1/2(891) due to

2.on=¢(2,0) = fo o (T,t)dt
2

Lemma 1, there must exist a function w! € Hg;y (Ql) such that w! n =w
< C||¢llo,0,- Hence, the function w

on T, w'-n=0o0n0d0 —T and ||w!|m,, () <

(07,¢(, 2)) is such that w def [w!

wl w?] € X; testing (23a) with w yields
/Qvl’6 wl —/p ’€V-W1+a/(v1’5-n)(w1-n)dS+/p2’5¢

o o T Qs

+€2/MVTV12V’E- VTg—/uﬁzvﬁ,‘(b:e/ffv’sg. (40)

Q2 Qo Q2

Applying the Cauchy—Schwarz inequality to the integrals and reordering we get

‘ / p2’6¢’ SClel’eHo,ﬂl HWIHO,QI + le’EHO,QlHV : Wl”o,ﬂl + CQHVLE ) n”O,FHCHO,F
Qo

+eCy[|Vr (evzzv’e)Ho,QzHVT §(f,z)“0,92 +Ci [0 V12v76||0,92H¢H0,92 + H6f12\f’6||o,92||§“o,92'

Notice that due to the construction, all the norms depending on w! and ¢, with the exception of Vrg,
are controlled by the norm ||¢||o,q,. Therefore, the above expression can be reduced to

[ 7] < (1w N + 17, Il 12 5T, + Bl
Qo

eIV (2 o0, [ V@ 2) g, < O ( +el|Vrs(@ 2o 0,)-

The last inequality holds since all the summands in the parenthesis are bounded due to the estimates
(28), (38) and the Hypothesis 2. Taking upper limit when ¢ — 0, in the previous expression we get

limis(;lp ‘ / P2 (b‘ <C H‘bHo,QQ~ (41)
Q2

Since the above holds for any ¢ € C§°(€2), we conclude that the sequence {p*€: e > 0} C L*() is
bounded and consequently (37) follows.

From the previous part it is clear that the sequence {[pl’e,pQ’E] te> 0} is bounded in L?(Q), so the
proof is complete. O
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Finally, we identify the dependence of p? and €.

Theorem 13. Let &, p? be the higher order limiting term in Corollary 11 (i) and the limit pressure in Qo in
Lemma 12 (ii), respectively. Then (see Fig. 3) we have

0. € =0, € (5), (423>
p* = p*(2). (42b)

Proof. Testing (23b) with ¢ = [0, ¢?] € Y and letting € — 0 together with (33b) and (34b), we get

/VT-viso%/azw?: ,

for all p? € L?(23), consequently
Vr-vi4 0.6 =0.

Now, due to the dependence of vZ from Corollary 11 (iii) the Identity (42a) follows.
For the Identity (42b), take the limit as e | 0 in (40); since the sequence {[pl’e,p2’e] te> 0} is weakly
convergent as seen in Lemma 12, this yields

/Qvl-wl—/plv-wl-l—a/«f(wl-n)d5+/p2¢—/,uaz§¢:0.
r Q3 Q2

o o

Integrating by parts the second summand and using (24a) we get

/pl(w ndS+a/§W n)dS+/p¢ /Maz§¢:0.

T Qo Qo

Recalling that w! -n|p = fol ¢ (T, z) dz, we see the above expression transforms into

1 1
/p Ir O/qutdt da:+a/§\p O/qutdt

+/P2¢(5,2)dfdzf/uaz&b(:?,z)dfdz:O.

QQ Q?

The above holds for any ¢ € C§°(22) and £ |r, p' |r can be embedded in Q5 with the extension, constant
with respect to z, to the whole domain, so we conclude that

—pr+allr+p° —pd.£=0 in L*(Q).
Together with (34c) this shows

p?=pd. & —av'-n|p+ptr in L*(Q), (43)
and then with (42a) we obtain (42b). O

We close this section with an equivalent form for (23) which will be useful in characterizing the limiting
problem.



1348 F.A. Morales, R.E. Showalter / J. Math. Anal. Appl. 452 (2017) 1332-1358

Proposition 14. The problem (23) is equivalent to

[ve,pe] eXxY:

/Qvl,s _wl _ /p1’€V'W1 _/p2,e VT Wi _ /pQ,eazw?\]
1951

Q1 Qo Qo

/MVT(GV ) Vrwi 4+ — 1 /uaz(evg»e).azwi

QQ QQ
+e/uVT(ev ) Vrw? +/u82v]2f 0. w?,
QQ QQ
+a/(v1’6on)( dSJr/B\/_ eve) - wdee/fzﬁ w2, (44a)

Qo

/V v1€g01+e/VT v2E 2 —i—/@ v —/hl’ewl, (44b)

for all [w,p] € X xY.

Proof. It is enough to observe that in the quantifier w = [w!, w?] € X, the tangential and normal compo-

nents of w? are decoupled. Therefore, the satisfaction of the Statement (23a) for every [w', (w2, w?2)] € X

or for every [w', (e7* w2, w2 )] € X are equivalent logical statements; this proves the result. O

4. The limiting problem

In order to characterize the limiting problem, we introduce appropriate spaces. The limiting pressure
space is given by

YO = (' ¢?) € Y i 6P = 2(@)}. (45)

We shall exploit below the equivalence Y° = L2(Q;) x L?*(T). The construction of the velocities limiting
space is more sophisticated. First define

def N—-1 ~
X§ 2 {w? = (w2, wi] s wh e (H1(22)" T, w2 = wi(@),
w2 = 00ndl, w2 € H(.,Q), ;w2 = 0, w(3), w2 (3, 1) = o} (46a)

endowed with its natural norm

1/2
Iw?lxg = ( + W2 o ) - (46b)

Next we introduce a subspace of X fitting the limiting process together with its closure,

W (Wl w?) € X wd = w(@), 0. wh = 0. wh (7)), (472)

Xodéf{(wl,WQ)EHdiv(Ql)XXO w!.n=w? :w2-nonF}. (47b)

Clearly W C X% N X; before presenting the limiting problem, we verify the density.
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Lemma 15. The subspace W C X is dense in XO.

Proof. Consider an element w = (w!,w?) € X°, then w? = (w2,w?%) € X3, where w? € H(d,,) is
completely defined by its trace on the interface I'. Given € > 0 take @ € Hy(T') such that ||w—w% |p| L2

A

[0}

e. Now extend the function to the whole domain by o(Z, z) =f @(T)(1 = 2), then [0 = w3 [|m(s..0,) <
The function (w2, p) clearly belongs to W. From the construction of ¢ we know that |o|r — w2 |r|lor =
lw — w% |rllor < €. Define g = o|r — w? | € L*(T'), due to Lemma 7 there exists u € Haiy(Q1) such
that u'n=gonTl,u-n=0o0n0d —I and |[ullg,, ) < Cillgllor with C1 depending only on ;.
Then, the function w' + u is such that (w! +u) - n=w!' - n+w—- w3 = w and [|[w!' +u—w'|g,, () =

2 =
”uHHdiv(Ql) < Cl”.g
due to the previous observations we have

o.r < Cj e. Moreover, we notice that the function (w! + u, [w2, g]) belongs to W, and

Hw — (w1 +u, [w?7 Q])HXO = H(wl,w2) — (w1 +u, [w?7 Q])HXO <+VCi+1e.
Since the constants depend only on the domains €; and o, it follows that W is dense in X°. O
Now we are ready to give the variational formulation of the limiting problem.

Theorem 16. Let [v,p], with v = [V%,f], be the weak limits obtained in Corollary 11 and Lemma 12. Then
[v,p] satisfies the variational statement

[v,p] € X? x Y%
/QV1~W17/p1V~W17/p2V~ [wi,wi]
Q1 Qq Qo

+/MVTV§:VTWi+/u(GZ§) (9.w%)

Qz Q2

+a [ (v''n)(w' n)dS+ [ BVQVE -w2dS = [ £} w3, (48a)
Jo s s

r

/V-Vlgol—k/v-[vi, ]¢2=/h1g01, (48b)
1951

QQ Q1
for all [w, ] € X° x Y°.

Moreover, the mized variational formulation of the problem above is given by

v,pl e X" xY?: Av—B'p=H,

(49)
Bv=h,
where the forms A : X° — (X°) and B : X° — (Y°)' are defined by
def [ Q@+ maTm 0
A= - , 50a
( 0 [hBVDur+ (Vo) u Vo, (0.) no.] ) (502)

def V. 0 div 0
B‘(o v)‘(o div>' (50D)
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Proof. First, test the Problem (44) with a function of the form [w, ] € W x Y. This gives

/Qvl,e_wl_/pl,ev_wl_/pQ,EVT.Wi_/pQ,eaZWIQV

Ql Ql Qz QQ

Qa Q2 Q2

—&-oz/(v“-n)(Wl-n)dS—i—/ﬁ\/@(evi’e) w2 dS = /fze-w +6/f2€-W12\,,
r r

Q2
/VV cp—i—/VT ev2 gp—i—/@vN(p—/hl’egpl,

and then letting € | 0 yields

/Qv W*/pvwf/pVTW /pzazw?v

Q1 Qo Qo
//LVTV VTW +/u5‘zfazw12\,
Qz QZ
—l—a/(v1~n) (w1~n)dS+/B\/_Vi'widS:/f%~wi, (52a)
r r Q2
/V~v1g01+/VT <p+/3§go —/hl (52b)
Q1 Qo Q1

Since the variational statements above hold for all [w,¢] € W x Y? and the bilinear forms are continuous
with respect to the space X° x Y°, we can extend them by density to all test functions [w, ] € X% x YY;
these yield (48). Finally, the mixed variational characterization (49) follows immediately from the definition
of the bilinear forms A and B given in (50a) and (50b), respectively. O

The existence of a solution of Problem (49) follows from that of the limits above. For an independent
proof of the well-posedness of Problem (49) we prepare the following intermediate results.

Lemma 17. The operator A is X°-coercive over X° Nker(B).

Proof. The form Av (v) + / (V- v)2 is X%-coercive, and V - v |o, = 0 whenever v € ker(B). O

Qq

Lemma 18. The operator B has closed range.
Proof. Fix ¢ = [p!, ¢?] € Y. With ¢? = p?(7) € L?(T'), solve the auxiliary problem

—V-Vép=0¢' in O, Vé-n=¢? on T, ¢=0 on 09, —T. (53)
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Then u! = —V¢ satisfies V-u! = ¢!, u! -n= —¢? and

1/2
[l 20) < C1 (I 8.0, + 10°05.0,) " (54)

because [|©?||r2ry = ||| L2(0,)- Next, define u2 (7, 2) ef —¢*(Z)(1 — z). The function u = (u', [07,u?])

belongs to the space X (see Fig. 3), and

/2 _ = 1/2
lullxo < C (0t f,, @) + X 1@, 00) " < O + e M8.0,) " (55)

Here C depends on the domains 2,5 as well as the equivalence of norms for 2-D vectors, but it is
independent of ¢ € Y°. Moreover, notice that V - [07, u?%] = 2. Hence, we have the inequalities

[V -wdx - Jo, #' V-ulde+ [, ¢*V - [07,u}]dT d>
sup >
wexo  [[wllxo [Jul[xo
1

1 12 212
> G Mol TR, ~ 5 (1T + 1718,
1 2

)1/2

1
=5||s0||o,sz, VeeY’ O (56)

Theorem 19. The Problem (49) is well-posed.

Proof. Due to Lemmas 17 and 18 above, the operators A and B satisfy the hypotheses of Theorem 2 and
the result follows. O

Remark 4. Note that the proof of Lemma 18 for the limit problem (49) is substantially different from the
corresponding Lemma 5 for the e-problem (16). This is due to the respective spaces X° and X; the condition
w!-n =w?-non I is significantly different in terms of regularity, from one case to the other. Specifically,
in the case of the limit problem w' - n| € L*(T'), while in the e-problem w' -n|. € H*/?(T'). The demands

of normal trace regularity on I' are weakened in the limit as a consequence of the upscaling process.

Corollary 20. Let {[Vs,pe] De > 0} C X XY be the sequence of solutions to the family of problems (23),
then the whole sequence converges weakly to [v,p] € X° x Y, the solution of Problem (48).

Proof. Due to the well-posedness shown in Theorem 19, the solution [v,p] € X% x Y° of Problem (49)
is unique. On the other hand, all the reasoning from Section 3.1 on, is applicable to any subsequence
of {[ve,pe] e > O}; which yields a further subsequence weakly convergent to [v,p]. Hence, the result
follows. O

4.1. Dimension reduction

The limit tangential velocity and pressure in {25 are independent of 2y (see (35) and (42)). Consequently,
the spaces X°, YY and the problem (48) can be dimensionally reduced to yield a coupled problem on Q; x T'.
To that end, we first modify the function spaces. For the pressures we define the space

Yo déf{[<p 2l e L2(Q) x LA(T /90 +/ defo (57)
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endowed with its natural norm. For the velocities we define the space

X0 0 (wh,w?) € Han (@) x (H3(1)" : w' n’F e L*(D)}, (58a)

with the norm

1/2
09t w2 oo (I, It g 9 ) (58b)

Remark 5. Clearly the pressure spaces Y% and Y are isomorphic (see Fig. 3). It is also direct to see that
the application ¢ : X — X given by [wl,w2] — [wl,wi], is an isomorphism, because w? is entirely
determined by its trace on I' and w2 (7,0) = w! - n (see Fig. 3).

Theorem 21. Let [v,p], with v? = [v?@], be the weak limits found in Corollary 11 and Lemma 12. Then,
with the corresponding identifications, [v,p| satisfies the following variational statement

[v,p] € X9 x Y.
/Qvl-wl—/plv-wl—&-(u—i—a)/(vl-n) (w' ) dz,
r

+/p2(w1~n) di—/pQVT~wid§+/ﬁ\/_vi ~wid§+/uVTV§:VTWid5:/f%~widi,
r r r r
(59a)

/V'vlcpl—/ (vl-n)g02d5+/VT~Vigozdfz/hlcpl, (59Db)
Ql I T Ql

for all [w, ] € X9 x Y.

Furthermore, the mized formulation of the Problem above is given by

[v,p € XP x Y : Av - B'p =T,

(60)
Bv =h,

with the forms A : X% — (XY and B : X% — (Y% defined by

def [ Q474 (L + ) Tn 0
A= " , 61a
< 0 BVO+ (V) uVr (61a)

def [ V- 0 div 0

B = = . 61b
( ~Mm V- ) ( —Yn  divy ) ( )
Proof. Notice that if w? € X° then 9, w? = 0, w2 () = —w%(7,0) = —w? -n = —w! - n (see Fig. 3).

Next, we introduce this observation in the Statement (48) above, together with the Identity (34c); this
gives
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[v,p] € X? x Y%

/Qv1~wl—/p1V~W1+(,u+a)/(Vl-n) (w!-n) dz
of r

Q

—|—/p2(w1-n) d%—/pQVT-WidE—&-/uVTvi:VTwid%—l—/ﬁ\/_vi 'W%«dSZ/f%'Wid%,
r

r T r r

(62a)

/V-Vlapl—/ (V1~n)g02d5+/VT~vigo2d§5:/h1<p1, (62Db)
Ql N I Ql

for all [w, ] € X? x Y°.

Due to the isomorphism between spaces as highlighted in Remark 5, the result follows. O
Now we outline an independent proof that Problem (60) is well-posed.
Theorem 22. The problem (60) is well-posed.

Proof. First, showing that the form v — A(v)v is X-elliptic, is identical to the proof of Lemma 17.
Next, proving that B has closed range follows exactly as the proof of Lemma 18 with only one extra
observation. Notice that defining u' def —V ¢, where ¢ is the solution of the auxiliary Problem (53),

satisfies u - n’F = p? € L*(T) then, recalling the Estimate (54) we get

2 2
From here, it follows trivially that the function u = (ul, OT) satisfies an estimate of the type (55) as well
as a chain of inequalities analogous to (56). Therefore, the operators A and B satisfy the hypotheses of
Theorem 2 and the Problem (60) is well-posed. O

We close this section presenting the strong form of Problem (59).

Proposition 23. The problem (59) is the weak formulation of the boundary-value problem

ovi+vp' =0, (63a)

V-vi=ht in Q, (63b)
Vrp?+BVAv:i— (V) nVr(vi) =12, (63c)
Vr-vi—-vli-n=0, (63d)
p—p=@u+a)vi-n din T, (63e)
pl=0 on 09 —T, (63f

)
v:i=0 on OT. (63g)

The problem (63) is obtained using the standard decomposition of weak derivatives in Problem (59) to
get the differential equations in the interior and then the boundary and interface conditions.
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5. Strong convergence of the solutions

In this section we show the strong convergence of the velocities and pressures to that of the limiting
Problem (48). The strategy is the standard approach in Hilbert spaces: given that the weak convergence
of the solutions [Vé,pe] :) [v,p] holds, it is enough to show the convergence of the norms in order
to conclude strong convergence statements. Before showing these results a further hypothesis needs to be
accepted.

Hypothesis 3. In the following, it will be assumed that the sequence of forcing terms {f>< : e > 0} C L?(£23)
and {hY€:e> 0} C L?(£) is strongly convergent i.e., there exist £2 € L2(€;) and h' € L?(Q;) such that

£ = o0, =570 8% = A0, =57 0 (64)

Theorem 24. Let {[vﬁpe] TE> O} C X xY be the sequence of solutions to the family of Problems (23) and
let [v,p] € X° x YO, with v? = [v2,£], be the solution of Problem (48), then

Hvi’E - ViHQQQ — 0, HVT vi’s — Vr vi”mm — 0, (65a)
v — v?\,HH o an =0, (65b)

( z 2)
Hvl’€ — VlHHdiv(Ql) — 0. (65¢)

Proof. In order to prove the convergence of norms, a new norm on the space X9, defined in (46a), must be
introduced

1/2
w = {IVE Ve (W)l 0, + V70 w2l 0, + V0 Wh 3 0, + IVawh |3 + VB VQW2Er |

< |\w (66)

g -

Clearly, this norm is equivalent to the || - [ xg-norm defined in (46b). Now consider

. € 2
imsup {IVEV[0, + 5. €]}
< limis(;lp {||\/>V1,e||(2)’Ql + |[vV/E Ve (evi,E)H(Q),Qz + [V 0. VIQV’EH(Q),QQ + [l (6 Vr VIQV’E)H(Q),QQ

VR 02 o, + Vv iy + VB VO (w2l <[22+ [nihe (o7

Qo (931

On the other hand, testing the Equations (48) on the solution [v, p] and adding them together, gives

IVav!|

3,91 + [V Vr Vi”%,m + ||\/l78z§||g,92

+Vavt-nlfr + VB VavE

lor = /f2 v° dﬁc'dz+/h1p1 dx. (68)
Qo2 Q1

Comparing the left hand side of (67) and (68) we conclude one inequality.
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Next, due to the weak convergence of the sequence {[e v, v¥] : € > 0} C XY, it must hold that

03 €]y < timint || (v, V2] g = timint {I| V&IV (ev3) 0, + [VEO: v} 0,
VROV IR 0, + IVaviIi e+ VB VAV ”01“}' (69)

In addition, due to the weak convergence discussed in Corollary 20, in particular it holds that
1|2 s 1,e(|2
H‘/_V HO,Ql S hﬁﬂlng\/_V ||O,Ql' (70)
Putting together (69), (70), (67) and (68) we conclude that the norms are convergent, i.e.

H(v1 [v2, lim H € [evZe, (71)

HL2(Ql)><X0 €10 VN HL2(§21)><X8'

Since the norm w — ||\/§WH0521 is equivalent to the standard L2?(2;)-norm, we conclude the strong

[ 2,€ 2,€

convergence of the sequence {( EVY, VN ]) te> O} to [v,p] as elements of L2(Q;) x X9. In particular,

the Statements (65a) and (65b) follow. Finally, recalling the Equality (24b) and the strong convergence of
the forcing terms {h'€ : € > 0}, the Statement (65¢) follows and the proof is complete. O

Remark 6. Notice that (71) together with (67) implies

c lim {|[Vr (Vi) o, + 10:v2No0, } < lim {lnVr(ev3) I, + I0:v37[5 g, } =0, (72)

where ¢ > 0 is an ellipticity constant coming from pu.
Next, we show the strong convergence of the pressures.

Theorem 25. Let {[ve,pe] :€> 0} CX XY be the sequence of solutions to the family of Problems (23) and
let [v,p] € X° x Y© be the solution of Problem (48), then

[Pt =1, =0, (73a)

9% = p?[|g. 0, = O (73b)
Proof. For the Statement (73a) first observe that (65¢) together with (24a) implies ||Vpl’6 - Vp! Ho 0, — 0
Again, since p'¢ = 0 on 0 — I then p' = 0 on 9Q; — I and, due to Poincaré’s inequality, the gradient
controls the H!(;)-norm, of p! and p':¢ for all € > 0. Consequently, the convergence (73a) follows.

Proving the Statement (73b) is significantly more technical. We start taking a previous localization step
for the function p?<. Let ¢. € C5°(£)2) be a function such that

lp* = &ello 0, < e

‘ /p“p“ —/pz’eqbe‘ = ‘/p“ (P> — ¢e)
O O

Qo2

Observe that

< [2*Nlo, 1P = Sellp0, < e (74)

where the last inequality in the expression above holds due to the Statement (37). In addition ¢. — p?
weakly in L?(£22) because, for any w € L?({),) it holds that
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Joow= [topyus [rusas [

Qo Qo Qo

In particular, taking w = w(Z) in the expression above, we conclude that fol be dz — p* weakly in L*(T).
Now, for ¢, define the function ¢, using the rule presented in the Identity (39), therefore ¢ |r = ¢.(Z,0) =
fol #c dz belongs to L?(TI") and, by construction, ¢ |r is bounded in L?(T"). Then, due to Lemma 1, there
. 1
must exist w! € Hg;y (1) such that w! - n = fo dedzon T, wl-n=0o0n0dQ —T and HWH|HdiV(Ql) <
C1||§5(5, O)HF < C. Where C; depends only on the domain. Hence, the function w, def [wl w?], with

2 def (07, (%, 2)), belongs to X. Test, (23a) with w, and get

/Qvlve.wi_/pl’ev-wi—i—a/ (vl’e-n)(wi-n)di
r

Q1 Q1

—i—/pQ’E (T, 2) dfdz—l—e/,uVT(evi;e) - Ve (Z,2)dzdz
QQ QQ

—/u&zvi‘(bs(%,z)dfcdz:e/f?v’ecsdfdz. (75)
Qs o

In the Identity (75) all the summands but the fourth, are known to be convergent due to the previous strong
convergence statements, therefore, this last summand must converge too. The first two summands satisfy

1
/Qvl’e-wi—/p1’€V~wi:—/pl’e(wi~n)d5:—/p1’e</¢€dz>d§—>—/ppodi.
o r r 0 r

Q1

The limit above holds due to the strong convergence of the pressure in H'(£2;) and the weak convergence
of f[o 1) @ dz. The third summand in (75) behaves as

a/ (vl’s-n) (Wi-n)dﬁc':/a(vl’€~n)(/1¢Edz)d§—>/a(vl~n)p2d5,

T r

because of the Statement (65b). Next, the fifth summand in (75) vanishes due to the Estimates (72) and
the sixth summand behaves in the following way

_ /uaz V2€ G (T, 2) dT dz — — /p@zf (wkll(i)m be(T,2)) dzdz
QQ Q2
1

_ 7/uaz§(/wleillti)m qﬁe(%,z)dz) dF = f/uazgdei.

r 0 T

The first equality above holds since 9, £ = 0, £(Z), while the second holds, because fol wkll(i)m (T, 2)dz =

Wkll(i)m fol ¢(Z,z) dz = p?. Finally, the right hand side on (75) vanishes. Putting together all these obser-

vations we conclude that

/p2’€¢e(§,z)d'fdz%/(uﬁ‘z§fav1~n\p +p1|r)p2d5.
Qg Q2
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The latter, together with (74) and (43) implies
2 ~ ~ 2
HPQ’CHO,Qz — / (uazf —avi-n Ir +pt |F) p?dx = /p2p2 dr = ||p2||0792.

Qg r

Again, the convergence of norms together with the weak convergence of the solutions stated in Corollary 20,
implies the strong convergence Statement (73b). O

5.1. Comments on the ratio of velocities

The ratio of velocity magnitudes in the tangential and the normal directions is very high and tends to

infinity as expected. Since {[|[v¥[lo.q, : € > 0} is bounded, it follows that [e v¥|lo.0, = €[lvallo.a, — O.

Suppose first that v2 # 0 and consider the following quotients

HV%EHO,Qz _ ||€V3“’E |0,Q2 Hvi”(lfb -9
2,€ - 2,€ > 2,6 > 0.
Ivillo.  llevilloe.  llevilloo.

The lower bound holds true for € > 0 small enough and adequate § > 0. Then, we conclude that the ratio
of tangent component over normal component L?-norms, blows-up to infinity i.e., the tangential velocity is
much faster than the normal one in the thin channel.

If v2 = 0 we can not use the same reasoning, so a further analysis has to be made. Suppose then that
the solution [(v!,v?), (p!,p?)] of Problem (59) is such that vZ = 0. Then, the Equation (63d) implies that
vl.n =0 on I ie., the activity on the region €2; is independent from the activity on the interface I. The

pressure on I' becomes subordinate and it must satisfy the following conditions:

pP=0p"-(u+a)v'-n)|.= (" - (p+a) Q' Vp' -n)|,
VTpQ:f%_

On the other hand, the values of p' are defined by h'. Hence, if we impose the condition that the forcing
term f2 does not have potential, then

f7 # Vr (p' = (u+ ) v -n),

and we obtain a contradiction. Consequently, restrictions on the forcing terms f2 and h' can be given, so
that v2 # 0 and the magnitudes relation ||v>||o.0, >> [|[v3‘|l0., holds for e > 0 small enough, as discussed
above. Two aspects must be stressed. Up to the authors’ best knowledge, is not possible to conclude the
latter velocities ratio without requiring adequate constraints on the forcing terms, in the same way that it
is not possible to attain strong convergence or dimensional reduction without the corresponding conditions
on the forcing terms. On the other hand, the well-posedness of the system, shown in Theorem 22, is assured
independently from the constraints suggested in this section.
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