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SUMMARY

The mathematical formulation and analysis of the Barenblatt–Biot model of elastic deformation and
laminar 2ow in a heterogeneous porous medium is discussed. This describes consolidation processes
in a 2uid-saturated double-di>usion model of fractured rock. The model includes various degenerate
cases, such as incompressible constituents or totally (ssured components, and it is extended to include
boundary conditions arising from partially exposed pores. The quasi-static initial–boundary problem is
shown to have a unique weak solution, and this solution is strong when the data are smoother. Copyright
? 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Any model of 2uid 2ow through a deformable solid matrix must account for the coupling
between the mechanical behaviour of the matrix and the 2uid dynamics. For example, com-
pression of the medium leads to increased pore pressure, if the compression is fast relative
to the 2uid 2ow rate. Conversely, an increase in pore pressure induces a dilation of the
matrix in response to the added stress. The concept of total stress is the essence of cou-
pled deformation-2ow behaviour within porous media and sets it apart from the theory of
2ow through a rigid structure. This coupled pressure–deformation interaction is the basis of
the development of poroelasticity starting with the work of Terzaghi [1; 2]. The (rst detailed
studies of the coupling between the pore-2uid pressure and solid stress (elds were described
by Biot [3]. The basic constitutive equations relate the total stress to both the e ective stress
given by the strain of the structure and to the pressure arising from the pore 2uid. Time-
dependent 2uid 2ow is incorporated by combining the 2uid mass conservation with Darcy’s
law, and the displacement of the structure is described by combining Hooke’s law for elastic
deformation with the momentum balance equations. The transient 2ow and deformation be-
haviour in a deformable porous medium may result from changes in either the 2uid pressure,
2ux, displacements, or traction conditions applied to the boundary of the medium. The model
for consolidation requires the quasi-static assumption that the dynamic momentum equations
be replaced by the corresponding equilibrium equations.
The representation of porosity and permeability in heterogeneous media often requires

several distinct spatial scales. Thus, the need arises for more general models incorporating
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qualitatively di>erent characteristics. For example, in problems of 2uid 2ow in subsurface
reservoirs and aquifers, the simplest and most frequently used model is the double-porosity=
double-permeability medium which consists of the combined e>ects of two distinct compo-
nents in parallel. These components occur locally in any representative volume element, and
they behave as two independent di>usion processes, which are coupled by a distributed ex-
change term. This construction and its application to the description of composite di>usion
processes are generally attributed to Barenblatt et al. [4]. In the special case which is used
to model fractured media, the (rst component of the model is the fracture system and the
second is the porous matrix structure.
As originally formulated, Biot’s theory applies to a homogeneous porous medium, but the

basic ideas of this fundamental poroelasticity model continue to play an important role in
the more complex double-di>usion models. Since the pressure (elds contribute to the stress
(eld of the structure, it is necessary to incorporate Biot’s concepts of poroelasticity into
the Barenblatt double-di>usion deformation model. First the equilibrium momentum equations
must be formulated with the contributions to total stress from the two pressure (elds. Then the
equations of 2uid transport can be obtained from the continuity of 2uid mass and consideration
of the e>ects of dilation of the structure on the 2ow in each of the components. The 2uid
transport within this composite deformable medium is described by a pair of pressure equations
for di>usion in the respective components of the medium together with an exchange term that,
in its simplest form, is proportional to the di>erence in pressure between 2uids in the two
components. This simplistic combination of the Barenblatt double-di>usion model with the
Biot di>usion–deformation model has been developed and used extensively in the engineering
literature.
Our objective is to develop the mathematical analysis of the initial–boundary-value problem

for the Barenblatt–Biot system representing double di>usion in elastic porous media. This
system takes the form

−(�+ �)∇(∇ · u)− �Lu+ �1∇p1 + �2∇p2 = f(x; t) (1a)

c1ṗ1 −∇ · (k1∇p1) + �1∇ · u̇+ �(p1 − p2) = h1(x; t) (1b)

c2ṗ2 −∇ · (k2∇p2) + �2∇ · u̇+ �(p2 − p1) = h2(x; t) (1c)

in which u is the displacement of the solid skeleton and p1 and p2 are the 2uid pressures in the
respective components. The constant � is the drained LamOe modulus, � is the shear modulus,
and the constants �1 and �2 measure changes of porosities due to an applied volumetric
strain. We will develop this theory for the Barenblatt–Biot system (1) as an example of the
application of the theory of implicit evolution equations in Hilbert spaces. Thereby we will
not only obtain optimal results on the appropriate spaces and de(nitions for the solution,
but we will also obtain corresponding estimates directly from the abstract theory. We are
especially interested in determining when the evolution is parabolic. This case will lead to
sharp estimates of order O(1=t), additional regularity of the solution, and a larger class of
data for which the initial-value problem is well posed. We are also interested in the behaviour
of limt→0 u(t) and limt→0 pi(t).

We begin in Section 2 with a description of the extension of the Biot di>usion–deformation
model to include the Barenblatt double-di>usion system. This is followed in Section 3 by
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SINGLE-PHASE FLOW IN POROELASTIC MEDIA 117

some remarks on the literature of these and related systems. After introducing appropriate
mathematical preliminaries in Section 4, we describe in Section 5 the quasi-static evolution
system and the corresponding initial–boundary-value problem for this system. In particular,
we include new boundary conditions which model the case of partially exposed pores, and
we include the case of degenerate coeQcients corresponding to an incompressible 2uid and
solid material.

2. THE DOUBLE-DIFFUSION-DEFORMATION MODEL

2.1. The rigid case

We (rst describe a two-component model for the 2ow of a single phase, slightly compressible
2uid in a rigid composite medium. This is de(ned to be a porous medium composed of two
interwoven (and possibly connected) components. For the case of a fractured medium, the (rst
component is a system of highly permeable fractures, and the second component is a matrix
of porous and somewhat permeable material, so both double-porosity and double-permeability
characteristics are exhibited. In the special case of disjoint porous blocks which are separated
by the system of fractures, it is called a totally fractured medium. The common characteristics
of fractured media are that the solid matrix occupies a much larger volume than the fractures
and that it is relatively much more resistant to 2uid 2ow than is the fracture system. As a
consequence, most of the 2ow passes through the system of fractures, while the bulk storage
of 2uid takes place primarily inside the porous matrix. The 2ow in the composite is enhanced
by the exchange of 2uid which takes place on the matrix–fracture interface. Limiting cases of
the geometry arise when one of the two components of the medium becomes disconnected.
In the case of a totally fractured medium, the global 2ow in the blocks is induced only
indirectly by the exchange of 2uid which takes place on the block–fracture interfaces, and
any interaction between the blocks is possible only via the neighbouring system of fractures,
which separate the blocks. The more general case of a connected matrix is called a partially
fractured medium. In this model, some part of the 2ow passes directly through the matrix
interconnections, but the primary 2ow still continues to be that from the matrix into fractures
followed by 2ow within the fractures.
More generally, the parallel *ow model is a classical description of di>usion in a hetero-

geneous medium. The idea is to introduce at each point in space a density, pressure or con-
centration for each component, each being obtained by averaging in the respective medium
over a generic neighbourhood suQciently large to contain a representative sample of each
component. The rate of exchange between the components must be expressed in terms of
these quantities, and the resulting expressions become distributed source and sink terms for
the di>usion equations in the individual components. Thus, one obtains a system of di>usion
equations, one for each component. The classical linear double-di usion model for the 2ow of
slightly compressible 2uid in a general heterogeneous medium consisting of two components
is the system

9
9t c1p1 −∇ · (k1∇p1) + �(p1 − p2)= h1 (2a)

9
9t c2p2 −∇ · (k2∇p2) + �(p2 − p1)= h2 (2b)
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For the model of a fractured medium, the (rst equation describes the 2ow in the fracture
system, which consists of regions of small relative volume but large permeability. The second
equation describes the 2ow in the matrix, which consists of regions of large porosity or
volume. System (2) was developed by Barenblatt et al. [4], and it has come to be known
as the Barenblatt system. It is parabolic when all constants are positive, but the applications
frequently require certain degenerate cases such as those described below.
Although the components of this system are structured symmetrically, fractured media char-

acteristics are necessarily modelled by the use of very small coeQcients. The fracture and
matrix phases are distinctly di>erent in both porosity and permeability. For the case of a
totally fractured medium, the coeQcient c1 is almost zero, because the relative volume of the
fractures is small, and k2 = 0 because there is so little direct 2ow within the matrix, i.e. it
may consist of individual cells which are isolated from each other by the fracture system. The
last term on the left of each equation represents the exchange of 2uid between the cells and
the fractures. The parameter 1=� represents the resistance of the interface to this exchange.
When �=0, no exchange 2ow is possible. An alternative interpretation is that � represents
the degree of (ssuring of the medium. When the degree of (ssuring is in(nite, the exchange
2ow encounters no resistance and p1 =p2. The external sources of 2uid represented by h1(·)
and h2(·) are located in the fractures and in the cells, respectively. By eliminating p2(·) from
system (2) with c1 = 0 and k2 = 0, we obtain the fractured medium equation

c2
9
9t

(
p1 − 1

�
∇ ·(k1∇p1)

)
−∇ · (k1∇p1)=

(
I +

c2
�
9
9t

)
h1 + h2

This equation is of pseudo-parabolic type.

2.2. The deformable case

We shall develop the model of deformable porous media with double di>usion. In order
to formulate such a model correctly, we (rst describe a representative element of volume, V ,
of the two-component composite medium. Denote by Vj the volume of 2uid in component j of
V , and �j ≡Vj=V , the porosity of component j, for j=1; 2: Let Vs be the remaining volume of
the solid part of V , and �s ≡Vs=V the corresponding volume fraction of solid. Of course, we
have V =V1 +V2 +Vs. The total porosity of the medium, i.e. the volume fraction available to
the 2uid, is given by �≡�1 +�2, and the remaining volume fraction of solid will be denoted
by �s ≡ 1− �.

2.2.1. Conservation equations. Let R be a smoothly bounded region which represents the
porous and permeable elastic matrix with density �, and assume it is saturated by a slightly
compressible and viscous 2uid which di>uses through it. The displacement of the solid matrix
is denoted by u(x; t) for each point x∈R and time t¿0. Let �s be the density of the solid.
The volume fraction of solid is given by 1 − �, so the quantity of solid in each subdomain
B of R is given by

∫
B(1−�)�s dx. The rate at which solid mass moves across the boundary

9B is given by ∫
9B
(1− �)�su̇ · n dS

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:115–139
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so the conservation of solid mass takes the integral form

9
9t

∫
B
(1− �)�s dx +

∫
9B
(1− �)�su̇ · n dS=0; B⊂R

When these quantities are di>erentiable, we obtain the equations of solid mass balance in the
di>erential form

9
9t (1− �)�s +∇ · ((1− �)�su̇)=0

If we expand these derivatives and express the result in terms of the material derivative,

D
Dt

≡ 9
9t + u̇ · ∇

then this is written as

�s
D�
Dt

=(1− �)D�s
Dt

+ �s(1− �)∇ · u̇ (3)

Let �1 and �2 be the densities of 2uid and w1 and w2 the displacement of the 2uid in the
respective components. Then the continuity of *uid mass in the (rst component is given by

9
9t �1�1 +∇ · (�1�1ẇ1) + S=�1h1

where h1 is the 2uid volume source and S is the 2uid mass exchange from the (rst component
to the second component. Using the Darcy relative velocity of the (rst component 2uid,

v1 ≡�1(ẇ1 − u̇)
we write this as

9
9t �1�1 +∇ ·�1(�1u̇+ v1) + S=�1h1

If we expand these derivatives, we obtain as before

�1
D�1
Dt

+ �1
D�1

Dt
+ �1�1∇ · u̇+∇ · (�1v1) + S=�1h1

By substituting from the solid conservation equation (3), we obtain

�1
D�1
Dt

+ �1

(
1− �
�s

D�s
Dt

+ (1− �)∇ · u̇
)
− �1 D�2

Dt
+ �1�1∇ · u̇+∇ · (�1v1) + S=�1h1

and this simpli(es to

�1
D�1
Dt

+ �1

(
1− �
�s

D�s
Dt

+ (1− �2)∇ · u̇
)
− �1 D�2

Dt
+∇ · (�1v) + S=�1h1 (4)

We need to express D�2=Dt above. Since �2 ≡V2=V , we have

D�2 =
1
V
(DV2 − �2 DV )=

1
V
((1− �2)DV2 − �2DV1 − �2DVs)
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Let p1 and p2 denote the *uid pressure in the respective components, and let ps be the
e ective pressure on the solid. This will be prescribed below as a linear combination of p1

and p2.

2.2.2. Structural constitutive equations. The fundamental variables in the system will be
the 2uid pressures p1 and p2, so we consider the dependence on variations in these local
pressures as the mean e>ective stress on the volume element. Due in part to the exchange
of 2uid between V1 and V2 and to an increment in the dilation of the solid, there results a
change in volume of the respective components of the form

DVj
V

= �jDpj + �jD∇ · u; j=1; 2

DVs
V

=−�sDps + �sD∇ · u

These account for the coupling of adjacent components in the medium, e.g. an increase of
p1 corresponds to an increase in V1 and a decrease of Vs corresponding to 2ow of 2uid into
V1, but the direct relation with V2 is not postulated. This gives from above

D�2 = (1− �2)(�2Dp2 + �2D∇ · u)− �2(�1Dp1 + �1D∇ · u) + �2(�sDps − �sD∇ · u)

Since the coeQcients of D∇ · u are �2(1− �2 − �1 − �s)= 0, this simpli(es to

D�2 = (1− �2)�2Dp2 − �2�1Dp1 + �2�sDps (6)

Thus, the dilation plays no role in the variation of porosity in the two-component medium.

2.2.3. Material constitutive equations. Changes in density are given by the compressibilities

1
�f

D�f
Dp

= cf ;
1
�s

D�s
Dp

= cs

of the 2uid and solid, respectively. Substitution of these and (6) into (4) leads to

�1�1cf
Dp1

Dt
+ �1(1− �)cs Dps

Dt
+ �1(1− �2)∇ · u̇

−�1
(
(1− �2)�2

Dp2

Dt
− �2�1

Dp1

Dt
+ �2�s

Dps

Dt

)
+∇ · (�1v1) + S=�1h1

Finally, we write the e ective solid pressure as

ps = �1p1 + �2p2
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and then replace the densities and porosities by their nearly constant values to obtain the
linearized storage equation

�f{�1cf + �scs�1 + �2�1 − �2�s�1}Dp1

Dt
+ �f{�2�scs − �2�s�2 − (1− �2)�2}Dp2

Dt

+�f (1− �2)∇ · u̇+∇ · (�f v1) + S=�fh1

Similarly, we obtain for the second component

�f{�1�scs − �1�s�1 − (1− �1)�1}Dp1

Dt
+ �f{�2cf + �scs�2 + �1�2 − �1�s�2}Dp2

Dt

+�f (1− �1)∇ · u̇+∇ · (�f v2)− S=�fh2

Since �sVs is constant,

D�s
�s

+
DVs
Vs

= 0

and by comparing the structural and material equations we obtain the consistency condition
�s =�scs. The exchange is given by S=�f�(p1 − p2), and Darcy’s law gives

v1 = −k1
�
(∇p1 + �fg)

v2 = −k2
�
(∇p2 + �fg)

where g is the gravitational acceleration. Then the system of storage equations simpli(es to
the form

�f (�1cf + �1�s(1− �2) + �1�2)
Dp1

Dt
+ �f (�2�s − �2)(1− �2)

Dp2

Dt

+�f (1− �2)∇·u̇ −∇ ·�f
(
k1
�
(∇p1 + �fg)

)
+ �f�(p1 − p2)=�fh1

�f (�1�s − �1)(1− �1)
Dp1

Dt
+ �f (�2cf + �2�s(1− �1) + �2�1)

Dp2

Dt

+�f (1− �1)∇ · u̇ −∇ ·�f
(
k2
�
(∇p2 + �fg)

)
− �f�(p1 − p2)=�fh2

By combining these with the momentum equation, we obtain the (nal form of our model
for 2uid 2ow and deformation in a saturated composite elastic porous medium. This is the
Barenblatt–Biot system

�Tu − (�+ �)∇(∇ · u)− �Lu+ �1∇p1 + �2∇p2 = f(x; t) (7a)
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�f (�1cf + �1�s(1− �2) + �1�2)
Dp1

Dt
+ �f (�2�s − �2)(1− �2)

Dp2

Dt

+�f (1− �2)∇ · u̇ −∇ ·�f
(
k1
�
(∇p1 + �fg)

)
+ �f�(p1 − p2)=�fh1 (7b)

�f (�1�s − �1)(1− �1)
Dp1

Dt
+ �f (�2cf + �2�s(1− �1) + �2�1)

Dp2

Dt

+�f (1− �1)∇ · u̇ −∇ ·�f
(
k2
�
(∇p2 + �fg)

)
− �f�(p1 − p2)=�fh2 (7c)

The choice of parameters �1 = (1−�2)=(1+�s); �2 = (1−�1)=(1+�s) is a convex combination
which gives the reversibility of the stress–strain relation for the material. That is, all elastic
energy of the system is recovered upon release of the load. Otherwise it would be possible
to extract energy from the system during a cycle of loading and unloading.
In most developments of the Barenblatt system for double di>usion, the matrix of coeQ-

cients for the pressures is assumed to be diagonal. This is usually justi(ed by a statement
that the cross e>ects of storage are negligible. However, our discussion above shows that
this is tantamount to assuming that �2�s ≈ �2 and �1�s ≈ �1, i.e. that the compressibility of the
components is approximated by a scaled compressibility of the solid. Such an assumption
simpli(es the system to the form

�Tu − (�+ �)∇(∇ · u)− �Lu+ �1∇p1 + �2∇p2 = f(x; t) (8a)

�f (�1cf + �1�s)
Dp1

Dt
+ �f (1− �2)∇ · u̇ −∇ ·�f

(
k1
�
(∇p1 + �fg)

)
+ �f�(p1 − p2)=�fh1

(8b)

�f (�2cf + �2�s)
Dp2

Dt
+ �f (1− �1)∇ · u̇ −∇ ·�f

(
k2
�
(∇p2 + �fg)

)
− �f�(p1 − p2)=�fh2

(8c)

For additional discussion of this point, we refer to Berryman and Wang [5]. We shall assume
this form of the system in the following, and furthermore we shall neglect the gravity term,
since the structure is not at all changed for the theory developed. Note, (nally, that (8)
contains the Barenblatt system (2) for the rigid case, u= 0. On the other hand, by letting
�→∞ and deleting the gravity terms in (8), we recover the classical Biot system

�Tu − (�+ �)∇(∇ · u)− �Lu+∇p= f(x; t) (9a)

�f (�f cf + �scs)
Dp
Dt

+ �f∇ · u̇ −∇·�f
(
k1
�
(∇p)

)
= �fh (9b)

for a single-component material.
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3. REMARKS ON THE LITERATURE

For a small sample of fundamental work on the storage equation and its application in reservoir
simulation, see Bear [6], Collins [7], Peaceman [8], and Huyakorn-Pinder [9]. Flow in porous
media and connections with the theory of homogenization are developed in the monograph
of Hornung [10].
The fully dynamic system (9) with �¿0 was introduced by Biot [11–14], to describe

higher-frequency deformation in porous media. For the theory of this system in the context
of thermo-elasticity, see the fundamental work of Dafermos [15], the exhaustive and comple-
mentary accounts of Carlson [16] and Kupradze [17], and the development in the context of
strongly elliptic systems by Fichera [18]. By contrast, very few references are to be found
in the thermo-elasticity literature for the mathematical well posedness of even the simplest
linear problem for the coupled quasi-static case, �=0, in which the system degenerates to a
mixed elliptic–parabolic type.
The poroelastic consolidation model of Biot requires the quasi-static case; see Biot [3]

and [19], Rice and Cleary [20], Zienkiewicz et al. [21]. An additional degeneracy occurs
in the incompressible case in which we have also cf = cs = 0, and then the system is for-
mally of elliptic type. A deeper study using homogenization methods reveals that the macro-
scopic equations of small-amplitude motion of a linearly elastic porous medium saturated
with an elastic Newtonian 2uid will have, in general, an integro-di>erential character. The
coeQcients can depend on the frequency, and the classical Biot system appears as a special
limiting case. In the case of a periodic structure, the macroscopic coeQcients are deduced
by homogenization from the assumed local structure. In general, anisotropy appears in the
macromodel, provided the local structure is anisotropic. See Auriault and Sanchez-Palencia
[22], Levy [23], Sanchez-Hubert [24], and the review by Auriault [10]. However, isotropic
cases will be developed below for simplicity, since the results do not depend on the speci(c
forms.
The mathematical issues of well posedness for the quasi-static case of (9) were (rst studied

in the fundamental work of Auriault and Sanchez-Palencia [22]. They derived a non-isotropic
form of the Biot system by homogenization and then proved existence and uniqueness of a
strong solution for which the equations hold in L2(R). In the later paper of Zenisek [25],
a weak solution is obtained in the (rst-order Sobolev space H 1(R), so the equations hold
in the dual space, H−1(R) (see below). The existence, uniqueness, and regularity theory for
the Biot system together with extensions to include the possibility of viscous terms arising
from secondary consolidation and the introduction of appropriate boundary conditions at both
closed and drained interfaces were recently given by Showalter [26]. The case of partially
saturated 2ow is developed by Showalter and Su [27]. All of the preceding are restricted to
homogeneous media.
The introduction of double-di usion composite models in order to model 2ow in rigid

heterogeneous media is generally attributed to Barenblatt et al. [4]; this construction and
its application to the description of 2ssured media were further developed by Warren and
Root [28]. Such multiporosity or multipermeability systems have been used extensively to
model various types of composite media; see Bear [29]. The mathematical theory of such
systems is obtained as an application of the theory of degenerate evolution equations by
Showalter [30, 31]. Such processes in deforming composite media are discussed in [5, 9,
32–37].
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4. MATHEMATICAL PRELIMINARIES

In order to obtain the mathematical formulation of system (1), we (rst recall some appropriate
function spaces. Then we construct operators in these spaces to represent the variational
formulation of the initial–boundary-value problem for this system.

4.1. Sobolev spaces

Let R be a smoothly bounded domain in �3, and denote by S0 and Str the two complementary
parts of a partition of the boundary, 9R. Denote by C∞

0 (R) the space of in(nitely di>erentiable
functions with support contained in R and by L2(R) the Lebesgue space of (equivalence classes
of) complex valued functions whose modulus squared is integrable on R, with the usual inner
product and induced norm

(f; g)=
∫
R
f Vg dx; ‖f‖=(f;f)1=2

For any p(·)∈L2(R) and j; 16j63, we denote by 9jp its distributional derivative,

〈9jp; ’〉=−
∫
R
p(x)9j’(x) ds; ’∈C∞

0 (R)

For integer m¿1, let Hm(R) be the Sobolev space consisting of those functions in L2(R) hav-
ing all derivatives up to order m also in L2(R). Each Hm(R) is a Hilbert space, and we de(ne
Hs(R) for real numbers s¿0 by interpolation. The trace map � :H 1(R)→Rg(�)=H 1=2(9R)⊂
L2(9R) is the operator de(ned by �(w)=w|9R as restriction to the boundary, 9R. The space
H 1

0 (R) is the closure in H 1(R) of C∞
0 (R) and is characterized as the subspace of H 1(R)

consisting of those functions whose trace is zero. The dual of H 1
0 (R) is the space H−1(R) of

distributions on R which are (rst-order derivatives of functions in L2(R). We shall also use the
quotient space L2(R)=� with the norm inf c∈� ‖p+c‖L2 . Corresponding spaces of vector-valued
functions will be denoted by bold face symbols. For example, we denote the product space
(L2(R))3 by L2(R) and the corresponding triple of Sobolev spaces by H1(R)≡ (H 1(R))3.
Finally, with I an interval in time, we denote by

L2(I ;Hm)=
{
f : I→Hm;

∫
I
‖f(#)‖2m d#6∞

}

the indicated space of Bochner square-integrable vector-valued functions.

4.2. Elasticity operator

The Navier system of partial di>erential equations describes the small displacements of a
purely elastic structure. The (small) displacement u(x)= (u1(x); u2(x); u3(x)) from the posi-
tion x∈R gives the (linearized) strain tensor %kl(u)≡ 1

2 (9kul+9luk) which provides a measure
of the local deformation of the body. The stress 'ij is a symmetric tensor that represents the
internal forces on surface elements. We assume that these are related by Hooke’s law for an
isotropic medium,

'ij= �(ij%kk + 2�%ij
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with positive LamOe constant � and shear modulus �. Let S0 and Str be the complementary
subsets of the boundary as given above. The stationary elasticity system is given by the
equations of equilibrium

−9j'ij =−9j(�(ij(9kuk) + �(9iuj + 9jui))=fi in R (10a)

ui =0 on S0; 'ijnj= gi on Str (10b)

for each 16i63.† Thus, the boundary condition on S0 is a constraint on displacement, and
on Str it involves the surface density of forces or traction '(n) with ith component given by
'ijnj and value determined by the unit outward normal vector n=(n1; n2; n3) on Str.
In order to obtain the weak formulation of this boundary-value problem, we de(ne the

Sobolev space

V= {v∈H1(R): v= 0 on S0}
of admissable displacements. We shall assume that measure (S0)¿0. The variational form of
the elasticity system (10) is given by

u∈V: e(u; v)= h(v) ∀v∈V (11)

where the sesquilinear form e(· ; ·) :V×V−→� and the conjugate linear functional h(·) on
the Hilbert space V are de(ned by

e(u; v)=
∫
R
(�(9kuk)(9ivi) + 2�%ij(u)%ij(v)) dx; h(v)=

∫
R
fi Vvi dx+

∫
Str
gi Vvi ds

Hereafter we denote the corresponding elasticity operator by E :V−→V′; this is the linear
operator determined by the sesquilinear form e(· ; ·) on V. The variational formulation (11)
is equivalent to E(u)= h. It follows from the Korn’s inequality and Poincare’s theorem that
e(· ; ·) is a V coercive form, and hence that E is an isomorphism [38, 39].
For u∈V we de(ne the restriction of E(u)∈V′

to C∞
0 (R) by E0(u). This is given by

the distributions E0(u)≡−(� + �)∇(∇ · u) − �Lu. Then we can recover the boundary-value
problem (10) from E as follows. If the closures of S0 and Str do not intersect, and if the
boundary is suQciently smooth, then the regularity theory for strongly elliptic systems shows
that whenever E0(u)∈L2(R) we have u∈H2(R)∩V (see References [39, 40], and then from
Stokes’ theorem there follows

E(u)(v)= (E0(u); v)L2(R) + ('ijnj; vi)L2(Str); v∈V (12)

This shows how E decouples into the sum of its formal part E0 on R and its boundary part
'(n) on Str.

†Throughout the following, we adopt the convention that repeated subscripts are to be summed.
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4.3. Double-di usion operator

We de(ne the appropriate spaces and operators to describe the Barenblatt double-di>usion
system (2). Suppose we are given the pair of functions k1(·); k2(·)∈L∞(R) satisfying

kj(x)¿c0¿0; x∈R; j=1; 2

Let V =H 1(R) and de(ne the sesquilinear form a(· ; ·) :V 2 ×V 2 −→� by

a

([
p1

p2

]
;

[
q1
q2

])
=
∫
R
(k1∇p1·∇q1 + k2∇p2·∇q2 + �(p1 − p2)(q1 − q2)) dx

for [p1; p2] and [q1; q2]∈V 2. The corresponding symmetric and monotone operator A :V 2 −→
(V 2)′ is of the form

A=

(
A1 0

0 A2

)
+ �

(
1 −1

−1 1

)

where the component operators Ai :V −→V ′, for i=1; 2, are de(ned by

Aip(q)=
∫
R
ki∇p ·∇q dx; p; q∈V

Speci(cally, each Ai has a formal part in H−1(R) given by the elliptic operator

Ai0 p=−∇ · ki∇p for i=1; 2

If p∈V; Ai0p∈L2(R), and ki(·) is smooth, then the elliptic regularity theory implies that
p∈V ∩H 2(R), and we obtain the decoupling of Ai into

Aip(q)= (Ai0p; q)L2(R) +
(
ki
9p
9n ; �q

)
L2(9R)

; q∈V

Combining the above component operators, we (nd that the decoupling of the symmetric
double-di>usion operator A :V 2 −→ (V 2)′ into a formal part in R and a boundary part on 9R
can be represented by

A

[
p1

p2

]
=


 A

1
0(p1) + �(p1 − p2); k1

9p1

9n

A2
0(p2) + �(p2 − p1); k2

9p2

9n


 (13)

in (L2(R)⊕L2(9R))2.
In order to compute the kernel of A, we note that for a pair [p1; p2]∈V 2, the equation

A

[
p1

p2

]([
p1

p2

])
=
∫
R
k1∇p1·∇p1 + k2∇p2·∇p2 + � |p1−p2|2 dx=0

implies ∇p1, ∇p2 and ‖p1 −p2‖ are equal to zero, since k1; k2 and � are all positive. Then
we have p1 =p2 = c for some c∈�.
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4.4. Pressure-dilation operators

Let the function /(·)∈L∞(Str) be given; we shall assume that 06/(s)61; s∈Str. Then de(ne
the corresponding gradient operator, ∇̃ :V →L2(R)⊕L2(Str), by

〈∇̃p; [f ; g]〉≡
∫
R
9jp Vfj dx−

∫
Str
/pnj gj ds; p∈V; [f ; g]∈L2(R)⊕L2(Str)

This consists of the formal part ∇p in R and the boundary part −/p n on Str, and we denote
this representation by

∇̃p=[∇p;−/p n] (14)

De(ne ∇̃ · :L2(R)⊕L2(Str)→V ′ to be the negative of the corresponding dual operator. This
is the divergence operator ∇̃·=−∇̃′

given by

〈∇̃ · [f ; g]; p〉≡−〈∇̃p; [f ; g]〉 [f ; g]∈L2(R)⊕L2(Str); p∈V
The trace map gives a natural identi(cation v �→ [v; �(v)|Str ] of

V⊂L2(R)⊕L2(Str)
and this identi(cation will be employed throughout the following. It also gives the identi(ca-
tion p �→ [p; �(p)|Str ] of

V ⊂L2(R)⊕L2(Str)
We note that both of these identi(cations have dense range, and so the corresponding duals
can be identi(ed. That is, we have

L2(R)⊕L2(Str)⊂V′; L2(R)⊕L2(Str)⊂V ′

For smoother functions v∈V⊂L2(R)⊕L2(Str) we have the Stokes’ formula

〈∇̃ · v; p〉=−
∫
R
9jp vj dx +

∫
Str
/ Vpvjnj ds

=
∫
R
9jvj Vp dx −

∫
Str
(1− /)v· n Vp ds; p∈V

This shows the restriction satis(es

∇̃ · :V→L2(R)⊕L2(Str)
and that the divergence operator has a formal part in R as well as a boundary part on Str.
We denote the part in L2(R) by ∇·, that is, ∇ · v= 9jvj, and the identity above is indicated by

∇̃ · v=[∇ · v;−(1− /)v · n]∈L2(R)⊕L2(Str); v∈V (15)

Now we can extend the de(nition of ∇̃ from V up to L2(R)⊕L2(Str). This extension is
obtained as −(∇̃·)′, the negative of the dual of the restriction to V of the divergence. This
dual operator

(∇̃·)′ :L2(R)⊕L2(Str)→V′
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is de(ned for each [f; g]∈L2(R)⊕L2(Str) by

〈(∇̃·)′[f; g]; v〉= (∇̃ · v; [f; g])L2(R)⊕ L2(Str)

= (9jvj; f)L2(R)−((1− /)v · n; g)L2(Str)
= (f; ∇ · v)L2(R)−(g; (1− /)v · n)L2(Str); v∈V

For the smoother case of [f; g]= [w; w|Str ], with the indicated w∈V identi(ed as a function
on R and its trace on Str, the Stokes’ formula shows that

−〈(∇̃·)′[w; w|Str ]; v〉=−(w; ∇ · v)L2(R) + (w; (1− /)v · n)L2(Str)
= (9jw; vj)L2(R)−(/w; v · n)L2(Str)
= (∇̃w; v)L2(R)⊕ L2(Str); w∈V; v∈V

and this shows that −∇̃·′ provides the desired extension of ∇̃ from V to L2(R)⊕L2(Str). The
preceding constructions are summarized in the following diagram.

L2(R)⊕L2(Str) ∇̃·=−∇̃′
−→ V ′⋃ ⋃

V ∇̃·−→ L2(R)⊕L2(Str) ∇̃=−(∇̃·)′−→ V′⋃ ⋃
V ∇̃−→ L2(R)⊕L2(Str)

Remark. Here the space L2(R)⊕L2(Str) is identi(ed with its dual through the Riesz
representation map, and since the space V is dense in L2(R)⊕L2(Str) the inclusion map to
the dual space V

′
is injective.

It will be necessary to characterize the kernels of both the gradient operator ∇̃ and the
formal gradient ∇ :V →L2(R). Recall that if ∇p=0 in H−1(R), then p(x)= c, a constant,
for x∈R.
Suppose that [f; g]∈Ker(∇̃). We have f(x)= c, and then from Stokes’ theorem we

(nd that ∫
Str
(c − (1− /)g) v · n ds=0 (16)

for all v∈V. Therefore, we have

f(x)= c; x∈R; c=(1− /(s))g(s); s∈Str (17)
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But from the identi(cation of the space V as a subspace of L2(R)⊕L2(Str), it follows that
[f; g]= [w; w|Str ]∈V ∩Ker(∇̃), where

w(x)= c; x∈R; c /(s)=0; s∈Str (18)

We summarize this calculation as the following.

Lemma 4.1. Ker(∇̃)=�; the constant functions; if /≡ 0. Otherwise; Ker(∇̃)= {0}.

Hereafter we shall denote the gradient and divergence operators above by ∇̃/
and ∇̃·/,

respectively, in order to display their dependence on the function /(·).
Now let /1 and /2 be a pair of functions in L∞(Str) as above. These determine the coupling

operators which will be used to write down the quasi-static system for double di>usion in an
elastic medium. Let the pair of numbers �1; �2¿0 be given. Using the notation introduced
in the previous section, we de(ne the linear operator W : (L2(R)⊕L2(Str))2 −→V′ by

W[(f1; g1); (f2; g2)] = �1∇̃/1 (f1; g1) + �2∇̃/2 (f2; g2)

[(f1; g1); (f2; g2)]∈ (L2(R)⊕L2(Str))2
(19)

Then its dual operator W′ :V−→ (L2(R)⊕L2(Str))2 is given by

W′(v)=−[�1∇̃·/1v; �2∇̃·/2 v]; v∈V (20)

These operators will determine the coupling of 2uid pressure to stress and of displacement to
dilation, respectively.

5. THE QUASI-STATIC SYSTEM

We formulate our problem as an evolution system in the appropriate Hilbert spaces. Then we
characterize the corresponding Cauchy problem as an initial–boundary-value problem for a
system of partial di>erential equations of mixed types and discuss its relation to the Barenblatt–
Biot consolidation problem. Finally, we prove that the Cauchy problem for this Barenblatt–Biot
evolution system has a unique solution in two situations. With L2-type data prescribed, it has
a strong solution, and when H−1-type data is prescribed, it has a weak solution.

5.1. Initial–boundary-value problem

Let P : (L2(R)⊕L2(Str))2 −→ (L2(R)⊕{0})2 be the indicated projection operator onto the (rst
components. In terms of the operators constructed in Section 4, the quasi-static system (1)
suggests the form

E(u(t)) + W[p1(t); p2(t)] = f(t) (21a)

P

[
c1ṗ1(t)

c2ṗ2(t)

]
+ A

[
p1(t)

p2(t)

]
− W′u̇(t) =

[
h1(t)

h2(t)

]
(21b)
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The (rst equation (21a) corresponds to the equilibrium system for momentum and the second
system (21b) is the mass balance for double di>usion. The (rst equation in the space V′ is
elliptic, and the second system in V ′ ×V ′ is of mixed elliptic–parabolic type with c1¿0; c2¿0.
The forcing terms f(·); h1(t) and h2(t) represent any externally applied forces and sources,
respectively. Note that we can eliminate the non-homogeneous term f(t) from this system by a
simple translation. That is, for each t¿0, let u0(t) be the solution of the stationary elasticity
problem E(u0(t))= f(t); and replace u(t) in (21) by u(t) + u0(t) to obtain the equivalent
system

E(u(t)) + W[p1(t); p2(t)] = 0 in V′ (22a)

P

[
c1ṗ1(t)

c2ṗ2(t)

]
+ A

[
p1(t)

p2(t)

]
− W′u̇(t) =

[
h1(t)

h2(t)

]
+W′u̇0(t) in V ′ ×V ′ (22b)

Then rename [h1(t); h2(t)] to be [h1(t); h2(t)] + W′u̇0(t). Thus, any non-homogeneous internal
or boundary distributed stresses can be replaced by corresponding null data.
We consider the quasi-static system (22) and show below that it is essentially a parabolic

system which has a strong solution under minimal smoothness requirements on the initial
data and sources h1(·) and h2(·). Note that (22b) requires that each pi(t)∈V , so both terms
of (22a) are necessarily in (L2(R)⊕L2(Str)), and this forces additional regularity on the
displacement u(t). By a strong solution, we mean that Equation (22b) holds in the smaller
space (L2(R) ⊕ L2(Str))2 ⊂ (V ′)2, so this solution has the additional regularity necessary to
decouple the partial di>erential equations and the boundary conditions implicit in (22b).
We shall display system (22) explicitly in its parts as an initial–boundary-value problem

for the system of partial di>erential equations and boundary conditions. Denote by 2tr the
characteristic function of the traction boundary, Str. Using the decompositions of the operators
constructed in Section 4, we (nd that system (22) takes the form

E0(u(t)) + �1∇p1(t) + �2∇p2(t) = 0 in R (23a)

9
9t (c1p1(t) + �1∇ · u(t)) + A1

0(p1(t)) + �(p1(t)− p2(t)) = h1(t) in R (23b)

9
9t (c2p2(t) + �2∇ · u(t)) + A2

0(p2(t)) + �(p2(t)− p1(t)) = h2(t) in R (23c)

u(t)= 0 on S0; '(n)− �1/1p1n − �2/2p2n=0 on Str (23d)

−�1(1− /1)2tru̇(t) · n+ k1 9p1(t)
9n = 31(t)

−�2(1− /2)2tru̇(t) · n+ k2 9p2(t)
9n = 32(t)

on 9R (23e)
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for each t¿0, and

lim
t→0+

[c1p1(t) + �1∇ · u(t)] = 41

lim
t→0+

[c2p2(t) + �2∇ · u(t)] = 42 in L2(R)

lim
t→0+

�1(1− /1)u(t) · n = 51

lim
t→0+

�2(1− /2)u(t) · n = 52 in L2(Str)

(23f)

where each [hi(t); 3i(t)]∈L2(R)⊕L2(Str) and the initial functions [4i; 5i] are given similarly.
Note that Equation (22a) is equivalent to pair (23a) and (23d), because p1(t) and p2(t) both
belong to V . Furthermore, for the strong solution, we have suQcient additional regularity to
guarantee that Ai0(pi(t))∈L2(R) for i=1; 2, and then (22b) is equivalent to (23b), (23c),
and (23e).
Let us consider the meaning of the boundary conditions in the context of this poroelasticity

model. Equations (23d) consist of the complementary pair requiring null displacement on the
clamped boundary, S0, and a balance of forces on the traction boundary, Str. The boundary
conditions (23e) require a balance of 2uid mass. For each j=1; 2, the function /j(·) is
de(ned on that portion Str of the boundary which is neither drained nor clamped, and it
speci(es the surface fraction of the pores from component j which are sealed along Str. For
these the hydraulic pressure contributes to the total stress within the structure. The remaining
portion 1 − /j(·) of the pores are exposed along Str, and these contribute to the 2ux. On
any portion of Str which is completely exposed, that is, where /j=0 for j=1; 2, only the
e ective or elastic component of stress is speci(ed, since there the 2uid pressures do not
contribute to the support of the matrix. On the entire boundary there is a transverse 2ow
into component j that is given by the input 3j(·) and the relative normal displacement of the
structure. This input could be speci(ed in the form 3j(t)=−(1−/j)v(t) · n, where v(t) is the
given velocity of 2uid or boundary 2ux on Str. The (rst term and right side of these 2ux
balances are null where /j=1, so the same holds for the second terms in (23e), that is, we
have the impermeable conditions k9pj(t)=9n=0 on a completely sealed portion of Str. We
also note that in (23e) the (rst term on the left side and the right side of each equation are
null on S0, so the same necessarily holds for the second term on the left side of each. That
is, we always have the null *ux conditions k19p1=9n= k29p2=9n=0 on S0.

5.2. Strong solution

In order to write the system as a single equation, we solve (22a) for u(t) and substitute it
into (22b) to obtain the equivalent form

d
dt

(
(cP +W′E−1W)

[
p1(t)

p2(t)

])
+ A

[
p1(t)

p2(t)

]
=

[
h1(t)

h2(t)

]
(24)

which holds in (L2(R)⊕L2(Str))2. Here we have let

c=

(
c1 0

0 c2

)
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be the indicated matrix. Equation (24) suggests the construction of the operator B de(ned on
(L2(R)⊕L2(Str))2 by

B[p1(t); p2(t)]=−W′(u)

where

E(u)=−W([p1; p2]); and pi ∈L2(R)⊕L2(Str); i=1; 2

In terms of the operator B, the system has the form

d
dt
(cP + B)

[
p1(t)

p2(t)

]
+ A

[
p1(t)

p2(t)

]
=

[
h1(t)

h2(t)

]

The time derivative of the solution occurs implicitly, so this is an evolution equation of
generalized Sobolev type, an implicit evolution equation.

Lemma 5.1. The operator

B=W′E−1W : (L2(R)⊕L2(Str))2 −→ (L2(R)⊕L2(Str))2

is continuous, self-adjoint and accretive.‡

Proof. The linear operator B is a composition of continous maps. Since E−1 is symmetric
and monotone, it follows that B is self-adjoint and accretive.

First, we consider the non-degenerate case in which both of the functions c1 and c2 are
uniformly positive and bounded on R. The operator obtained by restricting B to V ×V ,

M ≡ cP + B :V ×V −→V ′ ×V ′

is symmetric and strictly monotone, so it determines a norm on the space V ×V . Let Wm be
the space V ×V with this norm and the corresponding scalar product, (· ; ·)m≡M (· ; ·). Then
from the estimates

C ′‖[p1; p2]‖(L2(R)⊕; L2(Str))2¿‖[p1; p2]‖Wm¿C ′′‖[p1; p2]‖(L2(R))2
for some constants C ′ and C ′′¿0, it follows that W ′

m is a Hilbert space for which we have
the continuous imbeddings

(L2(R)⊕{0})2 →W ′
m→ (L2(R)⊕L2(Str))2

and the identity

f([p1; p2])= (f;M [p1; p2])W ′
m
; f∈W ′

m; [p1; p2]∈V ×V
Let D(A) be the subspace D(A)= {[p1; p2]∈V 2 : A[p1; p2]∈W ′

m} of Wm. To obtain an
(explicit) evolution equation in W ′

m which is equivalent to

d
dt
M [p1(t); p2(t)] + A[p1(t); p2(t)]= [h1(t); h2(t)] (25)

‡See [30] or [31] for de(nitions of accretive, m-accretive, sectorial and m-sectorial operators.
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we de(ne an unbounded operator C on W ′
m by

C[q1; q2]=A[p1; p2] i> [q1; q2]=M [p1; p2] for some [p1; p2]∈D(A)
This C(·) is de(ned on Dom(C)=M [D(A)], and the equation

d
dt

([
q1(t)

q2(t)

])
+ C

([
q1(t)

q2(t)

])
=

[
h1(t)

h2(t)

]
(26)

is equivalent to (25). We have

(C[q1; q2]; [q1; q2])W ′
m
=(A[p1; p2]; M [p1; p2])W ′

m
=A[p1; p2]([p1; p2])

and Rg(I + C)=Rg(M + A) in W ′
m. We shall prove the following.

Lemma 5.2. The unbounded operator C is self-adjoint and accretive on the Hilbert
space W ′

m.

Proof. The operator A is symmetric and monotone from Wm to W ′
m; hence, the operator

C is symmetric and accretive. To show C is self-adjoint, we will check that M + A is V 2

coercive and therefore Rg(M + A)=W ′
m. This will imply that I + C is onto W ′

m, so C is
maximal symmetric, hence, self-adjoint. Let [p1; p2]∈D(A). Then

(M + A)[p1; p2]([p1; p2]) = (cP + B+ A)[p1; p2]([p1; p2])

=
∫
R
(c1|p1|2 + c2|p2

2|) dx+ 〈u;E(u)〉

+
∫
R
(k1|∇p1|2 + k2|∇p2|2 + �|p1 − p2|2) dx

¿ c0‖[p1; p2]‖2V 2

for some c0¿0, since c1¿0 and c2¿0.

Lemma 5.2 shows that the operator −C is the generator of an holomorphic semigroup on
the space W ′

m, [30; 31; 41]. This implies that the initial-value problem for the evolution equation
(26) is well posed. That is, for each q∈W ′

m (26) has a unique solution [q1(·); q2(·)]∈C0([0; T ];
W ′
m)∩C1((0; T ]; W ′

m) with [q1(0); q2(0)]= q. Moreover, we obtain the following.

Theorem 1. Assume the functions c1(·) and c2(·) are uniformly strictly positive and bounded
on R. Let T¿0, 41; 42 ∈ (L2(R))2, and the HTolder continuous functions h1(·); h2(·)∈C�([0; T ];
L2(R)) be given. Then there exists a unique triple of functions p1(·); p2(·) : (0; T ]→V and
u(·) : (0; T ]→V for which each pi ∈C0([0; T ]; L2(R))∩C1((0; T ]; L2(R)) and

�i[∇0 · u(·); (1− /i)u(·) · n]∈C0([0; T ]; L2(R)⊕L2(Str))∩C1((0; T ]; L2(R)⊕L2(Str))
for i=1; 2, and they satisfy the initial–boundary-value problem (23) with 3i= 5i=0.
Moreover, the solution satis(es

t−→ tA([p1(t); p2(t)])∈L∞([0; T ]; (L2(R)⊕L2(Str))2)
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From Equation (22a) and the continuity of W and E−1, it follows that

u(·)∈C0([0; T ];V)∩C1((0; T ];V)

and from regularity of A and E we obtain

‖p(t)‖H 2(R); ‖u(t)‖(H 2(R))36C=t; 0¡t6T

We also note that the initial condition (23f) is equivalent to specifying at the initial time,
t=0, the combinations

[cipi(t) + �i∇0 · u(t); �i(1− /i)u(t) · n]; i=1; 2

which are just the *uid content in the respective components.

Theorem 2. When the given functions h1(·); h2(·) are smooth, the solution to the system is
C∞ for t¿0.

Proof. Since the linear operators A and E are regularizing, we can show that

(I + C)−1 : (Hk(R))2 −→ (Hk+2(R))2

Consider [q1; q2]∈ (Hk(R)⊕L2(Str))2 for which (I +C)([q1; q2])∈ (Hk(R)⊕L2(Str))2, that is,
C([q1; q2])=A([p1; p2])∈ (Hk(R)⊕L2(Str))2. Then the regularity theory for the elliptic op-
erator A implies that pi ∈Hk+2(R)⊕L2(Str). Also by Section 4.2 the regularity e>ect of E
on the solution implies that the spaces Hk+2(R)⊕L2(Str) are invariant under B, and hence
qi= ciPpi+B(pi)∈Hk+2(R)⊕L2(Str) for i=1; 2. Repeated application of the above will give
the smoothness of the solution.

5.3. Degenerate case

Here we consider the special case, in which one of the storage coeQcients can vanish, e.g.,
c1 = 0. In this case system (21b) is of mixed elliptic–parabolic type. In the context of the
poroelasticity model, this means the fracture component of the porous medium consists of
regions of negligible relative volume, and as a result the storage coeQcient for this component
vanishes. In this degenerate case, Equation (24) will be

d
dt

(((
0 0

0 c2

)
P +W′E−1W

)[
p1(t)

p2(t)

])
+ A

[
p1(t)

p2(t)

]
=

[
h1(t)

h2(t)

]

and the operator M ≡ c+ B : V ×V →V ′ ×V ′ with

c=

(
0 0

0 c2

)

is symmetric and monotone. In order to construct the evolution operator C as before, it is
suQcient that M be one-to-one. In order to check that condition, let [p1; p2]∈V 2. Then

M [p1; p2]([p1; p2])=
∫
R
c2|p2|2 dx+ 〈u;E(u)〉=0
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implies p2 = 0, and W[p1; p2]= �1∇̃/1 (p1) + �2∇̃/2 (p2)= 0. By Lemma 4.1, if /1 �=0, then
p1 = 0. This shows that ker(M)= {0} and, hence, M is strictly monotone. The above system
is well posed by the same argument presented for the non-degenerate case. More generally,
we have the following kernel condition.

Lemma 5.3. The condition ker(M)= {0} holds if either c1(·)¿0 and �2 /2(·) �≡ 0, or if
c2(·)¿0 and �1 /1(·) �≡ 0.

As described above, the function /1 speci(es the fraction of the (ssures that are sealed
along the boundary Str Two extremes are the situationss in which a uniformly parallel fracture
system is perpendicular to Str so all of the fractures are cut by Str, or in which all the fracture
system is parallel to Str and all the (ssures are sealed on the boundary surface. In the (rst
scenario /1 = 0, and in the latter /1 = 1. Most previous works have considered only the latter
case. The more typical scenario is the situation in which /1 takes on a value between 0 and 1.

5.4. Weak solution

Let us di>erentiate the (rst equation of the quasi-static system (22) to obtain

E(u̇(t)) + W([ṗ1(t); ṗ2(t)]) = 0 in V′ (27a)

cP[ṗ1(t); ṗ2(t)] + A[p1(t); p2(t)]− W′u̇(t) = [h1(t); h2(t)] in V ′ (27b)

This puts the system in the form of an implicit evolution equation

d
dt

(
E W

−W′ cP

)[
u(t)

p1(t); p2(t)

]
+

(
0 0

0 A

)[
u(t)

p1(t); p2(t)

]
=

[
0

h1(t); h2(t)

]

with the indicated matrix operators. This clearly displays the symmetric as well as anti-
symmetric terms in the system and suggests the following structure of our operators.
On the product space V≡V×V 2, we de(ne the bilinear form b(· ; ·) : V×V−→� by

b([u; p1; p2]; [v; q1; q2])= e(u; v) + 〈W[p1; p2]; v〉 − 〈W′u; [q1; q2]〉+
∫
R
c1p1q1 + c2p2q2 dx

Lemma 5.4. The operator B :V→V′ is continuous, monotone, and sectorial with Ker(B)=
{0; 0; 0}.
Proof. On the diagonal we have

Re〈B[u; p1; p2]; [u; p1; p2]〉= e(u; u) +
∫
R
(c1|p1|2 + c2|p2|2) dx

Since the sesquilinear e(u; u) is V-coercive and c1; c2 are uniformly positive, it follows that
Ker(B) is null and there is a constant c¿0 such that

Re〈B[u; p1; p2]; [u; p1; p2]〉¿c|Im〈B[u; p1; p2]; [u; p1; p2]〉|
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Similarly, we de(ne on V the sesquilinear form a(· ; ·) : V×V−→� by

a([u; p1; p2]; [v; q1; q2]) = A[p1; p2]([q1; q2])

=
∫
R
k1∇p1 · ∇q1 + k2∇q2 · ∇q2 + �(p1 − p2)(q1 − q2) dx

and this gives a symmetric and monotone operator A : V−→V′ in terms of the component
operator A : V 2 −→ (V ′)2. From the matrix representations of these operators,

B=

(
E W

−W′ cP

)
; and A=

(
0 0

0 A

)

we see that they are precisely the ones which represent the quasi-static system (27) in the
form

d
dt
B(̃u(t)) +A(̃u(t))= f̃(t) (28)

with ũ=[u; p1; p2]∈V.
Being a continuous, symmetric and monotone linear operator, A de(nes a seminorm on

the space V. We denote the space V with this seminorm A(· ; ·)1=2 by Va. Then the injection
V→Va is continous, and we have V′

a ⊂V′. The space V′
a is a Hilbert space, for which we

have the identity f̃(̃u)= (f̃;Aũ)V′
a
; f̃∈V′

a ; ũ∈V. De(ne the domain

D(C)= {B(̃u)∈V′
a : for some ũ∈V}

and the linear operator C : D(C)−→V′
a by

C(̃v)=Aũ i> ṽ=B(̃u)∈V′
a for some ũ∈V (29)

Then for any ṽ∈D(C) we obtain (Cṽ; ṽ)V′
a
=(Aũ;Bũ)V′

a
=(Bũ)(̃u), and since B is sectorial

on V, it follows that C is sectorial on V′
a . Moreover, we see that Rg(I+C)=Rg(A+B)∩V′

a .
This leads to the following lemma.

Lemma 5.5. The operator C is m-sectorial on V′
a .

Proof. It suQces to show that V′
a ⊂Rg(A+B). But we have Rg(A+B)=V′, since the

operator B+A is V-coercive.

The equation

d
dt
ṽ+ C(̃v)= f̃ in V′

a (30)

is equivalent to (28). By Lemma 5.5, the operator −C is the generator of an holomorphic
semigroup on the Hilbert space V′

a , which implies that the Cauchy Problem for (30) is well
posed. Speci(cally, we obtain from this the following results for the corresponding weak
solution of (28) and (27).

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:115–139



SINGLE-PHASE FLOW IN POROELASTIC MEDIA 137

Theorem 3 (Holomorphic case). Let T¿0. Let the pair [41; 42]∈ (V ′
a )

2 and a pair of HTolder
continuous functions h1(·); h2(·)∈C�([0; T ]; V ′

a ) be given. Then there exist a unique triple
of functions p1(·); p2(·) : (0; T ]−→V and u(·) : (0; T ]−→V for which cipi(·) + �i∇̃ ·
u(·)∈C0([0; T ]; V ′

a )∩C1((0; T ]; V ′
a ); i=1; 2, and they satisfy the initial-value problem

E(u(t)) + �1∇̃p1(t) + �2∇̃p2(t) = 0 (31a)

d
dt
(c1Pp1(t) + �1∇̃ · u(t)) + A(p1(t)) = h1(t) (31b)

d
dt
(c2Pp2(t) + �2∇̃ · u(t)) + A(p2(t)) = h2(t) for t ∈ (0; T ] (31c)

lim
t→ 0+

(c1Pp1(t) + �1∇̃ · u(t)) = 41 in V ′
a (31d)

lim
t→ 0+

(c2Pp2(t) + �2∇̃ · u(t)) = 42 in V ′
a (31e)

In addition the solution satis(es ‖A(̃u(t))‖V′
a
6C=t; 0¡t6T .

The above condition gives the following bounds on the solution:

‖pi‖Va =
〈Aipi; pi〉
‖pi‖Va

6‖Aipi‖V ′
a
6C=t; 0¡t6T for i=1; 2

and also since E is V-coercive we have

‖u(t)‖V6‖E(u(t))‖V′6
C
t
; 0¡t6T

We also have the following regularity results for the solution:

A([u; p1; p2])∈C0((0; T ];V′
a ); u∈C0([0; T ];V∩H 2(R))∩C1((0; T ];V∩H 2(R)

p1(·)∈C0([0; T ]; V=Ker(A1))∩C1((0; T ]; V=Ker(A1))

p2(·)∈C0([0; T ]; V=Ker(A2))∩C1((0; T ]; V=Ker(A2))

5.4.1. The boundary-value problem. We note (nally that in the case of the weak solution,
Equation (31a) in (L2(R)⊕L2(Str))2 is equivalent to the pair of equations

E0(u(t)) + �1∇p(t) + �2∇p(t) = 0 in R (32a)

u(t)= 0 on S0; '(n)− �1/1p1n − �2/2p2n=0 on Str (32b)

However, we cannot similarly decompose (31b) and (31c) into partial di>erential equations
and boundary conditions, as they hold in the space (V ′

a )
2. In this situation the weak solution

is not smooth enough to apply Stokes’ theorem.
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