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SEMILINEAR DEGENERATE BIOT-SIGNORINI SYSTEM

ALIREZA HOSSEINKHAN AND RALPH E. SHOWALTER

Abstract. Nonlinear extensions of the quasi-static Biot model of consolidation are
studied with emphasis on boundary conditions, attainment of initial values, and par-
abolic regularizing effects. The local fluid content is monotone and possibly nonlinear
or degenerate with respect to pressure, and the stress of the solid in the fully-saturated
porous medium is strictly monotone in strain. In addition to boundary conditions of
classical Dirichlet, Neumann, or Robin type, the medium may have a singular or de-
generate semipermeable interface with the exterior fluid at a known pressure, and the
monotone dependence of traction on boundary displacement includes unilateral con-
straints of Signorini type given by a variational inequality. The initial-boundary-value
problem for this general system is formulated as a Cauchy problem in Hilbert space for
a semilinear implicit evolution equation that is nonlinear in the time derivative, and it
is shown to be well-posed with regularity of the solution dependent on the data. When
the stress is the derivative of a convex strain energy function, the evolution equation is
a gradient flow with corresponding parabolic regularizing effects on the solution.

1. Introduction

A section of the fluid-filled vertical cylinder G× IR with bounded open
G ⊂ IR2 is occupied by the fully-saturated and deformable porous medium
Ω ≡ {x = (x1, x2, x3) : (x1, x2) ∈ G, φ0(x1, x2) < x3 < φ1(x1, x2)} with
φ0 < φ1. At time t > 0 and position x ∈ Ω, we denote pressure and flux
of the fluid by p(x, t) and q(x, t), displacement and stress of the medium
by u(x, t) and σ(x, t), respectively. The quasi-static Biot system for this
poroelastic medium is

∂
∂t

(
c(p) + α∇ · u

)
+∇ · q = F ,(1.1a)

−∇ · σ + α∇p = f ,(1.1b)

q+ κ∇p = κg , and(1.1c)

σ = E(ε(u)) in Ω, 0 < t ≤ T.(1.1d)
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Partial derivatives are denoted by ∂i =
∂
∂xi

, 1 ≤ i ≤ 3, ∇s = (∂1s, ∂2s, ∂3s)

is the gradient of the real-valued function s(x), ∇ · r = ∂iri is the di-
vergence of the vector-valued function r(x), and εij(r) = 1

2(∂irj + ∂jri)
is the symmetric gradient tensor. We employ the use of bold-face letters
for vectors, lower-case Greek letters for symmetric second-order tensors,
and summation on repeated indices is understood. Accordingly, we use
v ·w = viwi for the scalar product of vectors and σ :τ = σijτij for the prod-
uct of second-order tensors. Denote by Σ the linear space of symmetric
second-order tensors, and let δ = (δij) be the identity tensor.
Equation (1.1a) is the conservation of fluid mass and (1.1b) is the conser-

vation of solid momentum. The rate of change of the momentum has been
deleted from the latter since its magnitude is assumed to be substantially
smaller than the remaining terms in the equation. In other words, the
inertial effects are negligible, and the hyperbolic-parabolic fully-dynamic
Biot system reduces to an elliptic-parabolic system. This is the quasi-static
assumption. The constitutive equations (1.1c) and (1.1d) are Darcy’s law
and a nonlinear form of Hooke’s law, respectively. By taking these as def-
initions of q and σ, we can rewrite (1.1) as the equivalent classical two
field Biot system

∂
∂t(c(p) + α∇ · u)−∇ · κ(∇p− g) = F , and(1.2a)

−∇ · E(ε(u)) + α∇p = f in Ω, 0 < t ≤ T.(1.2b)

The boundary ∂Ω = Γ of the deformable porous medium consists of the
side ΓS ≡ {x = (x1, x2, x3) : (x1, x2) ∈ ∂G, φ0(x1, x2) < x3 < φ1(x1, x2)},
bottom Γ0 ≡ {x : (x1, x2) ∈ G, x3 = φ0(x1, x2)}, and top Γ1 ≡ {x :
(x1, x2) ∈ G, x3 = φ1(x1, x2)}. Denote the unit outward normal on ∂Ω by
n = (n1, n2, n3). The normal coordinate of the displacement field on the
boundary is un = u · n, and the tangential component is uT = u − unn.
Likewise, σn = σ(n) ·n and σ(n)T = σ(n)−σnn are the normal coordinate
and tangential component of the normal stress or traction σ(n) = (σijnj)
on the boundary.
We assume the medium Ω is sealed and fixed on the side. At the bottom,

it is in partial contact with the fluid below at pressure P0 ∈ IR and the
displacement is free. At the top, it is in partial contact with the fluid
above at pressure P1 ∈ IR, and displacement is constrained to lie below
a rigid and totally permeable constraint located at (x1, x2, φ1(x1, x2)) +
h(x1, x2)n(x1, x2), (x1, x2) ∈ G. Here h ≥ 0 is the distance measured



SEMILINEAR DEGENERATE BIOT-SIGNORINI SYSTEM 3

along the normal direction from Γ1 to the constraint. We assume there is
no tangential friction on the constraint. Therefore the boundary conditions
on the side are

qn = 0, and u = 0 on ΓS,(1.3a)

boundary conditions at the bottom are

qn = κ0(p− P0), σ(n)T = 0, and(1.3b)

σn − αp+ P0 = 0 on Γ0,(1.3c)

and at the top, they are

qn = κ1(p− P1), σ(n)T = 0, and(1.3d) {
un ≤ h, σn − αp+ P1 ≤ 0,

(un − h)(σn − αp+ P1) = 0 on Γ1,
(1.3e)

where the function κj(x) ≥ 0 is the interface permeability on Γj for j = 0, 1.
These are reduced by the flux resistance due to clogging or damage of the
boundary pores [28]. (Wherever κj(x) = +∞, we could replace the flux
balance by p = Pj; see [31].) The remaining conditions are the balance of
normal stress σ(n). The tangential component σ(n)T vanishes on Γ0 where
the medium is in contact with the stationary fluid and on Γ1 due to the
lack of friction with the constraint. Equation (1.3c) is the balance of the
normal component of normal stress on Γ0, and the unilateral constraints
(1.3e) are the classical Signorini contact conditions. That is, where there
is contact we have

un = h and σn ≤ αp− P1,

and then σn − αp+ P1 is the additional traction imposed on the medium
by the rigid constraint. Outside of the contact zone

un < h and σn = αp− P1.

In either case, the product in (1.3e) is equal to 0. The unilateral boundary
conditions on u in (1.3e) will be characterized by a subdifferential. We
shall recall this in detail in Section 2. Figure 1 depicts a cross-section of
the cylinder in successive stages when excess pressure from below pushes
the medium into the upper constraint. Our objectives are to determine
an appropriate variational formulation of the partial differential equations
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Figure 1. In (1), un = 0 on Γ1, in (2), 0 < un < h, and in (3), un = h on
part of Γ1.

(1.2) and boundary conditions (1.3), and to prove the well-posedness of
the corresponding initial-boundary-value problem with an initial condition

(c(p) + α∇ · u) |t=0+ = ζ on Ω(1.4)

for a given initial fluid content ζ(x) as indicated, or from a limit of such
functions.
The system (1.2) consists of a (possibly degenerate parabolic-elliptic)

porous medium equation and a nonlinear elliptic elasticity system coupled
by the grad-div dual pair of differential operators. As the coefficients or
other functions in these equations are introduced below, we continue to
indicate whether they depend variously on x and t, only x, or neither.
The equations hold in function spaces on Ω or its boundary ∂Ω during the
time interval (0, T ), so we shall frequently suppress the spatial variables.
The function spaces for the domain and its boundary are introduced in
Appendix A. In (1.2a), the function c(x, p) ≥ 0 denotes variations of the
fluid mass concentration that result from the combined compressibility of
fluid or solid particles. This is permitted to be a non-decreasing function
c(x, s) of pressure s = p at each x ∈ Ω. The dilation ∇ · u is a measure
of the porosity of the structure, i.e., the volume fraction available to the
fluid, and α(x) is the Biot-Willis function. In the situation considered
here, for a given function p on Ω there is a unique solution u of (1.2b)
with appropriate boundary conditions from (1.3), and with this we define
the Biot function on Ω by B(p) = c(p) + α∇ · u. This combination
gives the total variation in local fluid content or storage, and it plays a
central role in the development to follow. When both the fluid and the
material of the medium are incompressible, we have the degenerate case
c(p) = 0, so any change in local fluid content results from distortion of the
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medium. The function F (x, t) denotes volume-distributed fluid sources,
and f(x) and g(x) are autonomous volume-distributed forces on solid and
fluid within Ω, respectively. The viscosity of the fluid is normalized to
unity. The permeability for the Darcy flow of fluid in the medium is a
bounded function κ(x) with a positive lower bound. We do not consider
the variation of α or κ with small strains of the medium. The problem is
formulated in the context of small strain theory, but the stress is permitted
to be a strictly monotone nonlinear function σ = E(x, τ) of linearized
strain τ = ε(u) for each x ∈ Ω.
In the special case of homogeneous linear elasticity, Hooke’s law takes the

form σij(u) = Eijkℓεkℓ(u) corresponding to the linearized strain εij(u) =
1
2(∂iuj+∂jui) of the solid matrix of the porous medium. The elasticity ten-
sor E is symmetric and positive-definite: Eijkℓ = Ejikℓ = Ekℓij, Eijkℓτijτkℓ ≥
k0τijτij for τ ∈ Σ, where k0 > 0. If the medium is homogeneous and
isotropic, the elasticity tensor has components Eijkℓ = λδijδkℓ + µ(δikδjℓ +
δiℓδjk) where the constants λ > 0 and µ > 0 are the Lamé coefficients,
the dilation and shear moduli of elasticity, respectively. Then the stress
is given by Eijkℓ εkℓ(u) ≡ λδijεkk(u) + 2µεij(u), and its divergence is
∇ · σ = (λ+ µ)∇∇ · u+ µ∆u .
We shall obtain well-posedness results for initial-boundary-value prob-

lems for the system (1.2) that include nonlinear partial differential equa-
tions as indicated above and rather general boundary conditions (1.3).
These can be singular or degenerate coefficients, such as linear interface
permeability, and nonlinear monotone relations between stress and dis-
placement on the boundary, in particular, the unilateral Signorini con-
straint on boundary displacement from contact mechanics. We shall apply
standard results on maximal monotone operators and the Cauchy prob-
lem for nonlinear evolution equations in Hilbert space. These results are
summarized in Appendix B. They contain two notions of solution that are
part of the theory of nonlinear evolution equations, a differentiable-in-time
strong solution and a continuous-in-time generalized solution. It will be
shown that the initial-boundary-value problem uniquely determines the
Biot function of pressure, B(p(t)) for 0 < t ≤ T , and this, in turn, deter-
mines the displacement u(t) for a generalized solution, and it determines
both u(t) and the pressure p(t) for a strong solution. The generalized
solution evolves from more general initial data than does the strong solu-
tion. Moreover, in the hyperelastic case in which the elasticity operator is
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the derivative of a convex potential function, the system has the parabolic
regularizing effect that every generalized solution is a strong solution that
satisfies additional

√
t-weighted parabolic estimates.

The variational formulation of the system of partial differential equations
(1.2) and boundary conditions(1.3) will be reduced to a single abstract
nonlinear evolution equation by means of an intermediate construction, an
implicit evolution equation for the time derivative of the (nonlinear) Biot
function of the pressure and a (linear) elliptic function of the pressure.
The strong and generalized solutions of the initial-value problems for the
variational formulation and for the implicit evolution equation will be
defined to correspond to the respective solutions for the classical abstract
evolution equation. Precise assumptions on all the data in the problem
will be summarized in Assumptions 2.1 in Section 2.
The results obtained here go beyond those of [31, 49] in various ways.

• We address basic problems of contact mechanics in poro-hyperelastic
structures [6, 26, 29, 32, 34, 40, 60]. They extend those of [31] in
which the partial differential equations (1.2) are linear, and they
show that the major results of [49] do not depend on linearity. In
particular, (1.2a) contains the general porous medium equation, and
(1.2b) describes monotone nonlinear elasticity.

• A (differentiable) strong solution exists for initial fluid content ζ
from the range of the Biot function. Such a function will depend
on initial data (p0, u0) satisfying (1.4). A generalized solution exists
for initial value ζ from a closure of the range of the Biot function, a
much larger set.

• For a generalized solution, the total fluid content c(p) +α∇ ·u and
displacement u are uniquely determined by the initial data. Pressure
is unique for a strong solution, and it is also unique for a generalized
solution if s 7→ c(x, s) is strictly monotone.

• In the hyperelastic case for which the elasticity operator is the de-
rivative of a potential energy function, the dynamics is governed by
a gradient flow. This yields parabolic regularizing effects: a general-
ized solution is a (differentiable) strong solution, and then pressure
p is unique, even with the more general initial data. For the linear
case, this was shown in [49] to correspond to an analytic semigroup.
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• Even in the non-hyperelastic case, we obtain existence and unique-
ness of the generalized solution, but with less regularity. Nonethe-
less, we show backward difference approximations have sufficient spa-
tial regularity of their solutions to characterize the boundary condi-
tions, and their piecewise-linear-in-time interpolants are generalized
solutions of the approximating equation which satisfy the initial
condition.

• The results for the problem above will be proven first in the abstract
form for the implicit evolution equation, which is easily modified to
apply to a wide variety of configurations and boundary conditions
from contact mechanics for the the Biot system.

It is instructive to compare the results here with those obtained in [37, 49,
62] for the linear case and in [13, 14, 20, 21, 56, 63] for the nonlinear case
of dilation-dependent permeability.

Remarks on Literature. The fluid flow through elastic porous media
is described by poroelasticity [8, 22]. The theory began with the work of
K. Terzaghi [58] in soil science and was extensively developed in the en-
gineering community by M. Biot for subsurface acoustic problems and for
filtration-consolidation problems. The former problems lead to a system
of diffusion and wave equations [10, 11], while the latter consist of the cou-
pled diffusion and elliptic equations given by (1.2) [9]. Due to their many
applications in geomechanics and more recently in biomechanics [6, 32, 40],
these equations have been confirmed and extensively refined by homoge-
nization and mixture theories [3, 19, 27, 36, 56, 59]. These techniques also
characterize the scalings that lead to quasi-static case considered here.
Moreover, these and additional applications have driven their use in fun-
damental fluid-structure problems [4, 5, 57].
Mathematical theory for the fully-dynamic poroelastic acoustic problem

was developed in [27, 51] and (in the context of coupled thermoelastic-
ity) in [24, 30, 35], and for the quasi-static consolidation problem in [3]
and later in [37, 38, 49, 51, 62]. Additional estimates and alternative
formulations have been obtained for the needs of numerical analysis and
computation [1, 18, 37, 39, 41, 61]. These works have revealed a tremen-
dous variety of structures for the Biot system. See recent works of the
authors and references therein of [15] for a study of the well-posedness of
thermo-poro-visco-elastic structures and of [54] for extensions to nonlin-
ear models of Cahn-Hilliard type with two solid phases by exploiting their
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gradient flow structure. Existence of a solution has been established for
nonlinear problems that arise from partially saturated media [16, 52] with
a unilateral boundary constraint on pressure and for poro-plastic media
[51]. The approach of [51] is limited to constraints on the velocity ∂u

∂t .
See [44] for additional remarks on history and an extensive development
of various multi-component multiphase models that satisfy the second law
of thermodynamics and a corresponding dissipation inequality.
Nonlinear models from biomechanics use linear dilation for small poros-

ity variations that affect permeability κ(∇ ·u) [13, 14, 20, 21, 63]. In these
works, it is assumed that the solution satisfies 0 < κ0 ≤ κ(∇ · u) ≤ κ1, so
the diffusion is nondegenerate. But see [56], which describes physical laws
for which the permeability is not necessarily bounded below, and numeri-
cal simulations that show the problem can degenerate in a very challenging
manner. Also, some models use κ(fluid-content).
The case of pressure-dependent permeability κ(p) arises in geomechan-

ics, but this is not significant until very large values of pressure are reached
[43]; we do not include this case. In the context of quasi-static thermo-
elasticity, a Signorini-type constraint on the displacement with interface
conductivity dependent on the distance to the constraint κ1(h − un) was
obtained in [60]. Also, see the earlier works [2, 45] for a discussion of sim-
ilar thermal boundary conditions. None of these nonlinear problems are
directly amenable to methods of monotonicity, but they are structurally
similar and can be handled by additional compactness and fixed-point
methods or by methods of pseudo-monotone operators.
Problems with nonlinearity in gradients are frequently monotone [50,

51], and here we permit the stress to be a strictly monotone nonlinear
function of the linearized elastic strain in (1.1d). Such a constitutive
law is an unacceptable assumption in any nonlinear theory of elasticity
since the strain-energy function can not be everywhere convex. However,
this assumption has been used for phenomenological models intended for
limited extension beyond the linear range of Hooke’s law, even to replicate
plastic or locking behavior [4, 29, 51]. See [25, 34, 53] for more perspectives
on the constitutive relations in elasticity. Also, see [1] for a coupled Biot-
Stokes system with a quasi-Newtonian fluid. Here, as in [49], we show the
quasi-static hyperelastic Biot system is parabolic, that is, it is a gradient
flow.
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Extensive discussions of the effects of compressibility on uniqueness and
its use as a regularizing parameter c(p) = c0p, c0 → 0+, for existence
have been given in [13, 14]. Other works have regularized the momentum
equation with the addition of viscosity [12, 16] to establish existence. Note
that such regularizations suppress the parabolic effects that are present in
the purely elastic case considered here. The reference [13] contains a new
uniqueness proof for the non-autonomous linearized problem, and this
leads to a more efficient iteration step to resolve the nonlinear problem
with dilation-dependent permeability. It also develops the application of
classical results on implicit degenerate linear evolution equations [46] to
initial-boundary-value problems for the linear degenerate non-autonomous
Biot system.

The Plan. Background material is summarized in Appendix A for Sobolev
spaces and boundary trace results and in Appendix B for monotone op-
erators and nonlinear evolution equations in Hilbert space. In Section 2,
appropriate operators on Sobolev spaces are introduced to prescribe a
variational formulation of the boundary-value problem. These operators
make precise the sense in which solutions of the partial differential equa-
tions (1.2) and boundary conditions (1.3) satisfy the variational form of
the problem at each time t ∈ (0, T ].
Section 3 begins with the construction of the pressure-to-fluid-content

Biot function and the single semilinear implicit evolution equation that
represents the variational formulation. Then the Biot function of pres-
sure is characterized as the solution of a standard evolution equation in
Hilbert space. Two notions of solution are known for this abstract evo-
lution equation, and these determine the corresponding notions for the
semilinear implicit evolution equation and, thus, for the variational for-
mulation of the initial-boundary-value problem. The strong solution is
differentiable-in-time, and first estimates characterize a generalized solu-
tion that is a continuous-in-time limit of strong solutions. This latter
notion arises naturally in the theory of evolution equations. The differen-
tiability is lost, but the generalized solution still maintains a meaningful
notion of dynamics. In fact, it corresponds to the classical continuous
semigroup representation of solutions. See Section III.2 in [7] and Section
III.2 in [17]. In the absence of additional estimates available in special
cases or regularizations, it remains to show the sense in which even the
strong solution is related to the partial differential equations (1.2) and
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boundary conditions (1.3). This will be done for the generalized solution
at the end of Section 3.

2. The Variational Formulation

Now we construct the spaces that will be used to formulate the initial-
boundary-value problem. For j = 0, 1, let γj denote the pointwise a.e.
restriction of the trace γ to Γj, and assume the interface permeability
κj ∈ L1(Γj) is non-negative. Define the spaces (Appendix A)

W ≡ {s ∈ H1(Ω) : κ
1/2
j γjs ∈ L2(Γj), j = 0, 1},

V ≡ {v ∈ H1(Ω) : γv = 0 in H1/2(ΓS)}

for pressure p ∈ W and displacement u ∈ V. The scalar product on W
is characterized in Proposition 2.2. Note that we identify W ⊂ L2(Ω) ≃
L2(Ω)′ ⊂ W ′. The set of admissible displacements K = {v ∈ V : γnv ≤
h in H1/2(Γ1)} is closed, convex, and contains 0. Symmetric tensors Σ
and Σ-valued functions σij = σji ∈ L2(Ω,Σ) are regarded as columns of
vectors or vector-valued functions, respectively, so ∇ · σ = (∂iσij) and
σn = σ(n) · n. When the columns of σ belong to H(div,Ω), we have
σnn · γ1 ∈ V′. Then we can define the linear functional

ℓ(v) = −(σn − αγ1p+ P1)n · γ1(v), v ∈ V,

which will be used to characterize the boundary conditions on u in (1.3e)
as a subdifferential (Definition B.5). The subdifferential of the indicator
function is characterized by ℓ ∈ ∂IK(u) if and only if u ∈ K, ℓ(v − u) ≤
0 for v ∈ K, and for the particular set K above this is equivalent to
(1.3e), namely,

(2.5) un ≤ h, ℓ ≥ 0, ℓ(un − h) = 0 on Γ1.

See Section 8.1 in [29], Chapter 2 in [34], or Section II.6 in [48].
Let’s develop an appropriate variational formulation of the partial differ-

ential equations (1.2) and boundary conditions (1.3) at a time t ∈ (0, T ).
If (p(t),u(t)) ∈ W × V is a solution of (1.2), multiply (1.2a) by s ∈ W
and (1.2b) by v − u(t) ∈ V with v ∈ K, integrate with the Divergence
Theorem (A.19) and (1.3a), and subtract P (vn−un) ≡

∫
Γ0
P0(vn−un) dS+
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Γ1
P1(vn − un) dS from both sides of the second equation to obtain∫
Ω

∂
∂t (c(p) + αδ :ε(u)) s dx+

∫
Ω

κ(∇p− g) ·∇s dx

+ qn(γ0s+ γ1s) =

∫
Ω

F s dx, s ∈ W,

∫
Ω

(
E(ε(u)) :ε(v− u)− α p δ :ε(v− u)

)
dx− (σn − αγ1p+ P1)(vn − un)

=

∫
Ω

f · (v − u) dx−
∫
Γ0

P0 (vn − un) dS −
∫
Γ1

P1 (vn − un) dS, v ∈ V,

and − (σn − αγ1p+ P1) ∈ ∂IK(u).

Note that if ∂
∂t (c(p) + αδ :ε(u)) ∈ L2(Ω), then q ∈ H(div,Ω), so the diver-

gence theorem (A.19) holds for qn ∈ H−1/2(Γ) with qn|ΓS
= 0. Similar cal-

culations hold for σn without additional assumptions. Also, (vn−un)|ΓS
=

0. The t-dependence has been suppressed as noted above.
Assume the interface permeability satisfies κj ∈ L1(Γj) for j = 0, 1, and

that f ∈ L2(Ω). We use (1.3b), (3.18c), and (2.5) to rewrite this system
in the form

(2.6a) p(t) ∈ W :∫
Ω

∂
∂t

(
c(p) + αδ :ε(u)

)
s dx+

∫
Ω

κ∇p ·∇s dx+

∫
Γ0

κ0p s dS +

∫
Γ1

κ1p s dS

=

∫
Ω

F s dx+

∫
Ω

κg ·∇s dx+

∫
Γ0

κ0P0s dS +

∫
Γ1

κ1P1s dS, s ∈ W,

(2.6b) u(t) ∈ K :

∫
Ω

(E(ε(u)) :ε(v − u)− α p δ :ε(v − u)) dx

≥
∫
Ω

f · (v − u) dx−
∫
Γ0

P0 (vn − un) dS −
∫
Γ1

P1 (vn − un) dS, v ∈ K.

This consists of a nonlinear porous medium equation coupled by first-
order spatial derivatives to a variational inequality for a nonlinear elasticity
system.
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The Operators. Equation (2.6a) suggests we define linear operators A1 :
W → W ′ and B : L2(Ω) → H(div,Ω)′, the nonlinear Nemytskii operator
C : L2(Ω) → L2(Ω)′, and the linear functional F1(t) ∈ W ′ by

A1p(s) =

∫
Ω

(κ(x)∇p(x)) ·∇s(x) dx

+

∫
Γ0

κ0(x)p(x)s(x) dS +

∫
Γ1

κ1(x)p(x)s(x) dS

Bp(v) =
∫
Ω

α p(x)∇ · v(x) dx,

C(p)(s) =
∫
Ω

c(x, p(x))s(x) dx,

F1(t)(s) =

∫
Ω

F (x, t)s(x) dx+

∫
Ω

κ(x)g(x) ·∇s(x) dx

+

∫
Γ0

κ0(x)P0s(x) dS +

∫
Γ1

κ1(x)P1s(x) dS.

Likewise, (2.6b) leads us to define the nonlinear Nemytskii operator E :
V → V′, the sum of E with the constraint, A2 = E + ∂IK : V → V′, and
the linear functional F2 ∈ V′ by

E(u)(v) =
∫
Ω

E(x, ε(u(x))) :ε(v(x)) dx,

A2(u)(v) = E(u)(v) + ∂IK(u)(v) = E(u)(v) + {ℓ(v) : ℓ ∈ ∂IK(u)},

F2(v) =

∫
Ω

f(x) · v(x) dx−
∫
Γ0

P0 v(x) · n(x) dS −
∫
Γ1

P1 v(x) · n(x) dS.

Note that the operator A2 is multivalued, and its values are charac-
terized in part by (2.5). Also, in the system (2.6) the linear operator
B : L2(Ω) → H(div,Ω)′ and its dual B′ : H(div,Ω) → L2(Ω)′ occur

only in the respective compositions W ↪→ L2(Ω)
B−→ H(div,Ω)′ ⊂ V′ and

V ↪→ H(div,Ω)
B′
−→ L2(Ω)′ ⊂ W ′ with the indicated inclusion and restric-

tion operators.
We list sufficient conditions on the data for these operators and func-

tionals to be well-defined.

Assumptions 2.1. Let constants M, k0 > 0 and a function K(·) ∈ L2(Ω)
be given. Assume that the data satisfies the following conditions.
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(1) The region G is bounded and connected with a Lipschitz continuous
boundary ∂G, and the functions φ0, φ1, and h are Lipschitz contin-
uous with φ0 + k0 ≤ φ1 on G.

(2) The constants P0, P1 ∈ IR and the function α ∈ L∞(Ω) are given.
(3) The source and force functions are integrable:

F ∈ L1(0, T ;L2(Ω)), f ,g ∈ L2(Ω).

(4) The interface permeability is positive, integrable, and not all zero:

κj ≥ 0 in L1(Γj), j = 0, 1, and

∫
Γ0

κ0 dS +

∫
Γ1

κ1 dS > 0.

(5) The permeability of the medium satisfies κ ∈ L∞(Ω) and κ(x) ≥ k0.
(6) The Carathéodory function c : Ω× IR → IR satisfies

(a) c(x, r) is measurable in x, continuous in r, and c(x, 0) = 0,
(b) (c(x, r1)− c(x, r2)) (r1 − r2) ≥ 0, r1, r2 ∈ IR, and
(c) |c(x, r)| ≤ M |r|+K(x), r ∈ IR, a.e. x ∈ Ω.

(7) The Carathéodory function E : Ω× Σ → Σ satisfies
(a) E(x, τ) is measurable in x, continuous in τ , and E(x, 0) = 0,
(b) (E(x, τ1)− E(x, τ2)) : (τ1 − τ2) > 0, τ1, τ2 ∈ Σ, τ1 ̸= τ2,
(c) ∥E(x, τ)∥Σ ≤ M∥τ∥Σ +K(x), τ ∈ Σ, a.e. x ∈ Ω, and
(d) E(x, τ) : τ ≥ k0∥τ∥2Σ.

These assumptions give the essential properties of the operators and
functionals.

Proposition 2.2. From the Assumptions 2.1, we obtain the following.

(a) The linear operator A1 is continuous, linear, symmetric, and W -
coercive, so it determines an equivalent scalar product on W for
which A1 is the Riesz isomorphism of W onto W ′.

(b) The linear functionals satisfy F1(t) ∈ L1(0, T ;W ′) and F2 ∈ V′.
(c) The operators C and E are monotone, continuous, and affine bounded.

Moreover, E and A2 are strictly monotone and V-coercive.
(d) The multi-valued sum A2 is invertible, and the inverse A−1

2 is a
bounded monotone demi-continuous function. That is, it is contin-
uous from V′ to the space V with weak convergence.

Proof. (a) The coercivity of A1 follows from the Poincaré inequality,
Assumption 2.1(4), and Sobolev embedding theorems. (See also
Proposition II.5.2 in [48]).
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(b) The boundary integrals in F1(t) are finite since κ
1/2
j and κ

1/2
j s are

both in L2(Γj). Likewise, the continuity of those in F2 follows from
that of the boundary trace operator on V. The remaining terms are
bounded by Assumptions 2.1(3) and (5). Assumption 2.1(3) gives
the time dependence.

(c) Both C and E are Nemytskii operators (Theorem II.3.2 in [48]) for
which the estimates in Assumptions 2.1(6) and (7) apply. Also
Korn’s inequality holds since γ(v) = 0 on ΓS for v ∈ V, and ΓS has
positive measure.

(d) This follows from Corollary II.2.5 in [17], since the sum A2 is strictly
monotone and coercive, hence, A−1

2 is a maximal monotone function
with domain V′.

□

Additional regularity of data yields stronger conditions on the function-
als and operators.

Corollary 2.3. If F ∈ W 1,1(0, T ;L2(Ω)), then F1 ∈ W 1,1(0, T ;W ′).
If E is strongly monotone, i.e.,

(E(x, τ1)− E(x, τ2)) : (τ1 − τ2) ≥ k0∥τ1 − τ2∥2, τ1, τ2 ∈ Σ,

then E and A2 are strongly monotone and have Lipschitz continuous in-
verses.

Corollary 2.4. Assume in addition to (7) that there exists a potential
function G : Ω×Σ → IR such that G(x, τ) is measurable in x, strictly con-
vex and continuously differentiable in τ , and Eij(x, τ) = ∂τijG(x, τ), 1 ≤
i, j ≤ 3. Then the nonlinear operator E is the Fréchet derivative of the
convex function G(v) =

∫
ΩG(x, ε(v(x))) dx,v ∈ V.

(See the chain rule Proposition II.7.8 and Examples II.8 in [48] and Chap-
ter II of [55].) Note that in the linear case, G(x, τ) is quadratic in τ for
x ∈ Ω, and the elasticity tensor is given by Eijkℓ(x) = ∂τij∂τkℓG(x, τ).
In summary, the variational formulation of the system of partial differ-

ential equations (1.2) and boundary conditions (1.3) is the system (2.6).
With the indicated Sobolev spaces and operators, this system takes the
equivalent mixed form

p(t) ∈ W : d
dt(C(p(t)) + B′u(t)) +A1p(t) = F1(t) in W ′,(2.7a)

u(t) ∈ V : E(u(t)) + ∂IK(u(t))− Bp(t) ∋ F2 in V′, 0 < t < T.(2.7b)
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Definition 2.5. A strong solution of (2.7) is a pair of functions p :
(0, T ) → W, u : (0, T ) → V for which the sum C(p) +B′u ∈ C([0, T ],W ′)
with p ∈ L1(δ, T ;W ) for each 0 < δ < T , and the equations (2.7) are
satisfied at a.e. t ∈ [0, T ].

It is understood that (2.7a) implies d
dt(C(p(t)) + B′u(t)) ∈ L1(δ, T ;W ′)

for each 0 < δ < T , since A1 is an isomorphism. This is not enough to
obtain A1p(t) ∈ L2(Ω), hence, q(t) ∈ H(div,Ω), in order to specify the
boundary conditions on normal flux qn. Without further restrictions, even
a strong solution is not ‘regular enough’ to reverse the calculations that led
from (1.2) and (1.3) to (2.7). We return to this issue in Proposition 3.9.
Note that for a strong solution, the time-derivative in (2.7a) belongs to

W ′. This is the criterion that distinguishes the two types of solutions.

Definition 2.6. A generalized solution of (2.7) is a pair of functions p :
(0, T ) → W, u : (0, T ) → V for which the sum C(p) +B′u ∈ C([0, T ],W ′)
and there is a sequence {pn, un} of strong solutions of (2.7) with cor-
responding right-sides Fn ∈ L1(0, T ;W ′) such that we have convergence
C(pn)+B′un → C(p)+B′u in C([0, T ],W ′) and Fn → F1 in L1(0, T ;W ′).

3. The Implicit Evolution Equation

Hereafter the Assumptions 2.1 hold. From the consequences of Propo-
sition 2.2 we shall show that the system (2.7) is equivalent to a single
semilinear evolution equation of implicit type in Hilbert space for which
the appropriate initial-value problem is well-posed. Moreover, in the hy-
perelastic situation of Corollary 2.4, i.e., when not only A1 and C but also
A2 is a subdifferential operator, the evolution equation is driven by a sub-
gradient, so (2.7) is a gradient flow. It is in this sense that the evolution
equation is parabolic, and then regularizing effects follow for the solutions.

The Biot Function. We begin by considering the evolution part of
the system (2.7), namely, the time-differentiated combination in (2.7a)
of (p,u) ∈ L2(Ω)×V and the equation (2.7b) satisfying

C(p) + B′u = F in L2(Ω)′,(3.8a)

A2(u)− Bp ∋ F2 in V′.(3.8b)

Notice that the nonlinear operators in the system (3.8) are the Nemytskii
operator C and the operator A2. For each p ∈ L2(Ω) solve (3.8b) for u to
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define the value of the nonlinear Biot function B : L2(Ω) → L2(Ω)′ as

(3.9) B(p) ≡ C(p) + B′u, u = A−1
2 (Bp+ F2).

Then (3.8) is equivalent to p ∈ L2(Ω), B(p) = F in L2(Ω)′. However, as
noted above, the function B occurs in the evolution system (2.7) only as

the composition W ↪→ L2(Ω)
B−→ L2(Ω)′ ⊂ W ′ with inclusion and restric-

tion. Note that W is dense in L2(Ω) with a stronger norm determined by
A1.
The Riesz map A1 : W → W ′ represents the rate of dissipation of

the fluid in the medium, and the Biot function B : L2(Ω) → L2(Ω)′

represents the local fluid content in the medium, i.e., B is the pressure-
content operator. We shall develop their combined properties that will be
used below.

Lemma 3.1. The operator B is maximal monotone from L2(Ω) to L2(Ω)′.

Proof. First, we show that B is monotone. Let the pairs (p1,u1) and
(p2,u2) in L2(Ω) × V be corresponding solutions of (3.8). Since ui =
A−1

2 (Bpi + F2), subtracting respective components of the equivalent sys-
tems (3.8) gives

(C(p1)− C(p2))(p1 − p2) + B′(u1 − u2)(p1 − p2) = (B(p1)−B(p2))(p1 − p2),

(A2(u1)−A2(u2))(u1 − u2)− B(p1 − p2)(u1 − u2) ∋ 0,

and by adding these, we get

(3.10) (A2(u1)−A2(u2))(u1 − u2) + (C(p1)− C(p2))(p1 − p2)

∋ (B(p1)−B(p2))(p1 − p2).

That is, B(pj) + F2 is the selection from A2(uj), j = 1, 2, for which we
have equality in (3.10). Both A2 and C are monotone, so the function B
is monotone. Since A−1

2 is demi-continuous and C is continuous, also B is
demi-continuous, and it follows from Minty’s Theorem ([48], p.39) that it
is maximal monotone. □

Corollary 3.2. The Biot function B is maximal monotone from W to
W ′: for every β > 0, the Riesz mapping A1 : W → W ′ and the monotone
demi-continuous function B satisfy Rg(A1 + βB) = W ′. Moreover, if
B(p1) = B(p2) for p1, p2 ∈ W , then u1 = u2 and C(p1) = C(p2).
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Proposition 3.3. In the situation of Corollary 2.4, the operators A2 :
V → V′ and B : W → W ′ are subdifferentials.

Proof. Since A2 is the sum of a continuous Fréchet derivative and a sub-
differential, it is a subdifferential. To see that B is a subdifferential, we
use a theorem of Rockafellar [42] that a maximal monotone operator is a
subdifferential if and only if it is cyclic monotone. (See II 2.5 in [17] or II
Thm 2.3 in [7].) That A2 is cyclic monotone means that for every choice
of v∗j ∈ A2(vj), j = 1, ...n and v0 = vn, v

∗
n+1 = v∗1, we have

v∗1(v1 − v0) + v∗2(v2 − v1) + ...+ v∗n−1(vn−1 − vn−2) + v∗n(vn − vn−1) ≥ 0.

This is equivalent to

(3.11) (v∗1 − v∗2)v1 + (v∗2 − v∗3)v2 + ...+ (v∗n−1 − v∗n)vn−1 + (v∗n − v∗1)vn ≥ 0.

If we choose each v∗j ≡ Bpj + F2 and pn+1 = p1, then (v∗j − v∗j+1)vj =

B(pj − pj+1)vj = B′vj(pj − pj+1) = B′A−1
2 (Bpj + F2)(pj − pj+1), so (3.11)

is

B′A−1
2 (Bp1 + F2)(p1 − p2) + B′A−1

2 (Bp2 + F2)(p2 − p3) + . . .

+ B′A−1
2 (Bpn−1 + F2)(pn−1 − pn) + B′A−1

2 (Bpn + F2)(pn − p1) ≥ 0.

This shows the maximal monotone function p 7→ B′A−1
2 (Bp+F2) is cyclic

monotone. Then its sum with C, namely, p 7→ Bp = Cp+B′A−1
2 (Bp+F2) :

W → W ′, is a subdifferential. □

The definition of B in (3.9) implies that the variational formulation (2.7)
in W ′ ×V′ is equivalent to the semilinear evolution equation

(3.12) p(t) ∈ W : d
dtB(p(t)) +A1p(t) = F1(t) in W ′, 0 < t < T.

Definition 3.4. A strong solution of (3.12) with F1 ∈ L1(0, T ;W ′) is
defined to be a function p : (0, T ) → W for which B(p) ∈ C([0, T ],W ′)
with d

dtB(p) ∈ L1(δ, T ;W ′) for each 0 < δ < T , and (3.12) is satisfied at
a.e. t ∈ [0, T ].

Since A1 is an isomorphism, a strong solution necessarily satisfies p ∈
L1(δ, T ;W ) for 0 < δ < T and

B(p(t)) +

∫ t

δ

A1p(τ) dτ = B(p(δ)) +

∫ t

δ

F1(τ) dτ in W ′, 0 < δ < t ≤ T.
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Taking the limit δ → 0+ above shows the resulting improper integral in
the second term satisfies

(3.13) B(p(t)) +A1

∫ t

0+
p(τ) dτ =

B(p(0+)) +

∫ t

0

F1(τ) dτ in W ′, 0 < t ≤ T,

where we denote
B(p(0+)) = lim

δ→0+
B(p(δ)).

Lemma 3.5. Any two strong solutions p1, p2 of (3.12) with correspond-
ing right sides F1

1 (t),F2
1 (t) ∈ L1(0, T ;W ′) satisfy for each t ∈ (0, T ] the

estimate

(3.14) ∥B(p1(t))−B(p2(t))∥W ′ ≤

∥B(p1(0
+))−B(p2(0

+))∥W ′ +

∫ t

0

∥F1
1 (τ)−F2

1 (τ)∥W ′ dτ.

Proof. Set z(t) ≡ B(p(t)) in (3.12) so that p(t) ∈ B−1(z(t)). Define the
composite operator A ≡ A1B

−1 : W ′ → W ′. Then we can rewrite (3.12)
as

(3.15) z(t) ∈ W ′ :
dz

dt
+A(z) ∋ F1(t) in W ′, 0 < t < T.

Note that Dom(A) = Rg(B), A(z) = {A1p : p ∈ W, B(p) = z}, and
(I + A)(z) ∋ (B + A1)(p). Since A1 is the Riesz map on W and B−1 :
W ′ → W is monotone, the operatorA is accretive on the Hilbert spaceW ′.
Similarly, since B is maximal monotone, A is m-accretive. The function
z is a solution of (B.20) in the space H = W ′, so (3.14) is the estimate
(B.21) for (3.15). □

The correspondence between solutions of (3.12) and those of (3.15) is
at the heart of the construction, and it is the reason for the definition
of the operator A. Note that B is a single-valued function which is not
necessarily injective, so A can be multi-valued. Moreover, since B may be
degenerate, the uniqueness of pressure p is delicate.

Definition 3.6. A generalized solution of (3.12) is a function p : (0, T ) →
W for which B(p) ∈ C([0, T ],W ′) and there is a sequence {pn} of strong
solutions of (3.12) with corresponding right-sides Fn ∈ L1(0, T ;W ′) such
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that we have convergence B(pn) → B(p) in C([0, T ],W ′) and Fn → F1 in
L1(0, T ;W ′).

Thus, any two generalized solutions of (3.12) satisfy the estimate (3.14).
A generalized solution of (3.12) is uniquely determined by its initial value

B(p(0+)) = (C(p(t)) + B′u(t))|t=0+ = lim
δ→0+

(C(p(δ)) + B′u(δ)) ∈ W ′,

so the initial condition (1.4) is always meaningful. However, even if a
prescribed initial-value ζ ∈ Rg(B) is given, that is, there is a pair (p0,u0) ∈
L2(Ω)×V for which ζ = C(p0)+B′u0 with u0 = A−1

2 (Bp0+F2), the initial
condition (1.4) does not necessarily imply convergence of p(δ) to p0 or of
u(δ) to u0 without additional assumptions. This is a consequence of the
possible degeneracy of the Biot function B.
Corollary 3.2 and Proposition 3.3 show we are in the situation of the fol-

lowing existence-uniqueness theorem for the semilinear evolution equation
(3.12), which is equivalent to the variational formulation (2.7). See either
of [47] or Ch.IV, Corollary 6.3 of [48], but we shall give an independent
proof below. Specifically, the following theorem is a direct consequence of
the theory for the nonlinear evolution equation (3.15) with the operator
A defined in the proof of Lemma 3.5.

Theorem 3.7. Let W be a Hilbert space with the scalar product given by
the linear symmetric Riesz map A1 : W → W ′ and let F1 ∈ L1(0, T ;W ′).

(a) Assume B : W → W ′ is a monotone function. For any generalized
solution p of (3.12), B(p(t)) is uniquely determined by B(p(0+)) and
{F1(s) : s ∈ (0, t)} for each t ∈ (0, T ]. If p1 and p2 are generalized
solutions of (3.12) with F1 = F1

1 and F1 = F2
1 , respectively, then

they satisfy the estimate (3.14).
(b) Assume also that Rg(A1 +B) = W ′, i.e., B is maximal monotone.

Then for each ζ ∈ B(W ) ≡ Rg(B) and each absolutely continu-
ous F1 ∈ W 1,1(0, T ;W ′), there exists a unique strong solution of
the initial-value problem for (3.12) with B(p(0+)) = ζ, and it sat-

isfies p ∈ L∞(0, T ;W ). For each ζ in the W ′-closure B(W ) and
F1 ∈ L1(0, T ;W ′), there is a generalized solution of this initial-value
problem, and B(p(t)) is uniquely determined as above for t ∈ (0, T ].

(c) Assume B is the subdifferential of a proper, convex, and lower-semi-
continuous function φ : W → IR∞ with conjugate φ∗ : W ′ → IR∞.
Then for each ζ in the W ′-closure B(W ) = Dom(φ∗) and each



20 ALIREZA HOSSEINKHAN AND RALPH E. SHOWALTER

F1 ∈ L2(0, T ;W ′) the unique generalized solution of (3.12) with
B(p(0+)) = ζ satisfies

√
tp ∈ L2(0, T ;W ), φ∗(B(p)) ∈ L1(0, T ),

√
t d
dtB(p) ∈ L2(0, T ;W ′),

and p(t) ∈ Dom(B) for all 0 < t ≤ T.

If also ζ ∈ Dom(φ∗), then the generalized solution satisfies

p ∈ L2(0, T ;W ), φ∗(B(p)) ∈ L∞(0, T ), and d
dtB(p) ∈ L2(0, T ;W ′).

Proof. Define the operator A as in the proof of Lemma 3.5. Since A1 is
the Riesz map on W and B is monotone on W , the operator A is accre-
tive on W ′, so (a) follows from Corollary B.12. Moreover, A is m-accretive
in (b) because B is maximal monotone, so it follows from Kato’s Theo-
rem B.10 that the initial-value problem for (3.15) with z(0) = ζ has a
unique strong solution for each ζ ∈ Rg (B) = Dom(A) and absolutely
continuous F1 : [0, T ] → W ′. This Lipschitz continuous solution is dif-
ferentiable a.e. and z(t) ∈ Dom(A) for every t ≥ 0, so we obtain the
corresponding p(t) ∈ W from (3.12) and the definition of A, since A1 is
invertible. Thus Corollary B.12 verifies (b). For part (c), we note that
the inverse B−1 = ∂φ∗ : W ′ → W ′′ = W is the subdifferential of the cor-
responding proper, convex, and lower-semi-continuous conjugate function
φ∗ : W ′ → IR∞. Then the composition with the Riesz map of W is its
subgradient, A = A1B

−1 = Dφ∗, and Theorem B.15 yields (c). □

The Initial-Boundary-Value Problem. It remains to apply Theorem 3.7
to the situation of Proposition 2.2 with the Biot function B defined by
(3.9) and the operator A defined in the proof of Lemma 3.5. This yields
results for the initial-value problem for the Biot system (2.7) in W ′ ×V′

with initial-value limδ→0+
(
C(p(δ)) + B′u(δ)

)
= limδ→0+ B(p(δ)) given in

W ′. The first equation (2.7a) corresponds to (3.12) with u given by (2.7b).

Theorem 3.8. Assume the conditions of Proposition 2.2, and define the
Biot operator B : W → W ′ by (3.9).

(a) If p1,u1 and p2,u2 are generalized solutions of (2.7) with F1 =
F1

1 and F1 = F2
1 , respectively, then they satisfy (3.14). For any

generalized solution p,u of (2.7), B(p) = C(p)+B′u ∈ C([0, T ],W ′),
and both C(p(t)) and u(t) are uniquely determined by B(p(0+)) and
{F1(s) : s ∈ (0, t)} for each t ∈ (0, T ].
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(b) For each ζ ∈ B(W ) ≡ Rg(B) ⊂ L2(Ω) and each absolutely continu-
ous F1 ∈ W 1,1(0, T ;W ′), there exists a unique strong solution p,u of
the initial-value problem for (2.7) with B(p(0+)) = ζ, and we have

p ∈ L∞(0, T ;W ), d
dtB(p) ∈ L∞(0, T ;W ′), and u ∈ L∞(0, T ;V).

For each ζ in the W ′-closure B(W ) and F1 ∈ L1(0, T ;W ′), there
exists a generalized solution of this initial-value problem for which
C(p) and u are uniquely determined.

Assume also the conditions of Corollary 2.4.

(c) Then B is the subdifferential of a proper, convex, and lower-semi-
continuous function φ : W → IR∞. Let φ∗ : W ′ → IR∞ be the
corresponding conjugate function. For each ζ in the W ′-closure
B(W ) = Dom(φ∗) and each F1 ∈ L2(0, T ;W ′), the unique gen-
eralized solution p,u of (2.7) with B(p(0+)) = ζ satisfies

√
tp ∈ L2(0, T ;W ), φ∗(B(p)) ∈ L1(0, T ),

√
t d
dtB(p) ∈ L2(0, T ;W ′),

√
tu ∈ L2(0, T ;V), and p(t) ∈ Dom(B) for all 0 < t ≤ T.

If also ζ ∈ Dom(φ∗), then the generalized solution satisfies

p ∈ L2(0, T ;W ), φ∗(B(p)) ∈ L∞(0, T ), d
dtB(p) ∈ L2(0, T ;W ′),

u ∈ L2(0, T ;V), and p(t) ∈ Dom(B) for all 0 < t ≤ T.

Proof. Under the Assumptions 2.1, both (a) and (b) are true with W,A1

and B given in Proposition 2.2 and equation (3.9). The operator A is
m-accretive in (b) because B is maximal monotone by Corollary 3.2. Esti-
mates on u follow from those on p, since E is coercive and A−1

2 is bounded
and demi-continuous. By Proposition 3.3, B is the subdifferential B = ∂φ
of the proper, convex, and lower-semi-continuous function φ : W → IR∞,
so (c) follows. □

Finally, we show that even the generalized solution of (2.7) is the limit
of solutions of the partial differential equations (1.2) and boundary con-
ditions (1.3) with the time derivative replaced by a backward-difference.
Following the equivalence of the variational formulation (2.7), the implicit
evolution equation (3.12), and the standard evolution equation (3.15),
we approximate (2.7) by corresponding ε-approximate solutions (Defini-
tion B.13).
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Proposition 3.9. Assume the conditions of Proposition 2.2. Let p :
(0, T ) → W, u : (0, T ) → V be a generalized solution of the initial-
boundary-value problem for the system (2.7) with initial condition (1.4)

and ζ ∈ Rg(B) ⊂ W ′, RgB = {C(s) + B′v : s ∈ W, v ∈ V}.
(a) For each ε > 0 there is a discretization of F1(t) on (0, T )

0 = t0 < t1 < . . . tn−1 < tn = T, F1
1 ,F2

1 , . . .Fn
1 ∈ W ′

for which

βk ≡ tk − tk−1 < ε for 1 ≤ k ≤ n, and
n∑

k=1

∫ tk

tk−1

∥F1(t)−Fk
1 ∥ dt < ε,

and a pair of sequences {pk}, {uk}, 1 ≤ k ≤ n, defined recursively
from ζ0 = C(p0)+B′u0 ∈ Rg(B) with ∥ζ0−ζ∥W ′ < ε by the backward-
difference equations for pk ∈ W,uk ∈ V,

(C(pk) + B′uk) + βkA1pk = C(pk−1) + B′uk−1 + βkFk
1 in W ′,(3.16a)

E(uk) + ∂IK(uk)− Bpk ∋ F2 in V′, 1 ≤ k ≤ n,(3.16b)

such that the functions pε : [0, T ] → W and uε : [0, T ] → V defined
by pε(0) = p0, uε(0) = u0, pε(t) = pk and uε(t) = uk for t ∈
(tk−1, tk], 1 ≤ k ≤ n, are an ε-approximate solution of (2.7). That
is, ∥Cpε(t) + B′uε(t)− (Cp(t) + B′u(t))∥W ′ < ε for 0 ≤ t ≤ T .

(b) The sequences {pk}, {uk}, 1 ≤ k ≤ n, satisfy the partial differential
equations

(c(pk) + α∇ · uk)− βk∇ · κ(∇pk − g)(3.17a)

= (c(pk−1) + α∇ · uk−1) + βkFk , and

−∇ · E(ε(uk)) + α∇pk = fk in Ω, 0 < t ≤ T.(3.17b)

The boundary conditions on the side are

qkn = 0, and uk = 0 on ΓS,(3.18a)

those at the bottom are

qkn = κ0(pk − P0), σk(n)T = 0, and(3.18b)

σk
n − αpk + P0 = 0 on Γ0,
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and at the top, they are

qkn = κ1(pk − P1), σk(n)T = 0, and(3.18c) {
uk · n ≤ h, σk

n − αpk + P1 ≤ 0,

(uk · n− h)(σk
n − αpk + P1) = 0 on Γ1.

Proof. Part (a) is a direct consequence of Theorem B.14, Lemma 3.5, and
the definition of B, (3.9). For part (b), we note that C(pk)+B′uk ∈ L2(Ω)
for each k = 1, 2, . . . n, so restriction of (3.16a) to C∞

0 (Ω) shows A1pk ∈
L2(Ω). The restriction of (3.16b) to C∞

0 (Ω) shows ∇ · σ belong to L2(Ω).
We can take test functions s ∈ C∞

0 (Ω) in (3.16a) and v = u(t) ± φ with
φ ∈ C∞

0 (Ω) in (3.16b) to get the equations (3.17), and from these we
obtain qk ∈ H(div,Ω) and (the columns of) σ ∈ H(div,Ω). With this
added regularity and the use of (A.19) on qk and on each column of σ,
we are able to reverse the calculations, which led to (2.6) and obtain the
boundary conditions (3.18). This shows that the variational formulation
(3.16) of the ε-approximations has meaningful boundary conditions that
satisfy (3.18) as well. □

Concluding Remarks. The initial-boundary-value problem discussed in
this paper can be used as a prototype to resolve similar problems that arise
in applications. The Signorini unilateral boundary condition is a classical
example of a variational inequality used to formulate a challenging contact
problem in mechanics. It is a monotone multi-valued stress-strain relation
that models the non-penetration of the solid into a prescribed exterior
rigid constraint. Related nonlinear boundary conditions include contact
with normal elastic compliance with a deformable constraint or truncated
stress at a prescribed maximum level due to damage or wear. These can
be modeled with a monotone stress-strain function on the boundary and
described similarly by Theorem 3.7. It is necessary only to replace the
subdifferential ∂IK with an appropriate monotone Nemytskii operator on
the relevant part of the boundary. Alternatively, the indicator function
IK could be replaced with a Lipschitz and convex function. Moreover, the
fixed displacement condition in (1.3a) can be replaced with the bilateral
contact condition un = 0, σ(n)T = 0 on a part of the side ΓS where the
medium is pressed against the sides but free to slide tangentially. For a
well-posed problem, it would be sufficient to have constraints both above
and below the medium Ω. Dirichlet conditions on pressure p could replace
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the flux restrictions on the top or bottom. See [29, 34] for additional
examples and discussion.

Appendix A. Sobolev Spaces and Trace

We use spaces of square-summable Lebesgue measurable functions L2(Ω);
corresponding spaces of vector-valued functions are distinguished by bold-
face L2(Ω). From these one constructs the usual Sobolev spaces H1(Ω) ≡
{s ∈ L2(Ω) : ∇s ∈ L2(Ω)} and H(div,Ω) ≡ {v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)}.
The derivatives are taken in the sense of distributions on Ω, and we re-
call that a function f on Ω is identified with the distribution f̃ given by
f̃(ϕ) =

∫
Ω fϕ dx for ϕ ∈ C∞

0 (Ω). (Here dx denotes integration with re-
spect to Lebesgue measure on Ω.) This implies that L2 spaces are the only
Hilbert spaces for which the Riesz map RL2 is the identity. Specifically,
this means we must distinguish subgradients from subdifferentials in most
Hilbert spaces, namely, those which are not L2 over some set.
The continuous linear boundary trace operator γ : H1(Ω) → L2(Γ) de-

notes restriction to the boundary, γ(s) = s|Γ. The kernel of γ is H1
0(Ω),

the closure of C∞
0 (Ω) in H1(Ω). The range of γ is the space H1/2(Γ) with

the norm induced by the quotient map from H1(Ω)/H1
0(Ω) onto H1/2(Γ);

the inclusion map H1/2(Γ) ↪→ L2(Γ) is compact.
The dual of the range space is denoted by H−1/2(Γ). From the gradient,

divergence, and boundary trace operators, the continuous linear normal
trace operator γn : H(div,Ω) → H−1/2(Γ) is constructed by

(A.19) γnv(γs) =

∫
Ω

∇ ·vs dx+
∫
Ω

v ·∇s dx, v ∈ H(div,Ω), s ∈ H1(Ω).

The normal trace maps onto H−1/2(Γ), and (A.19) extends the classical
Divergence Theorem for which γnv = γv · n ∈ H1/2(Γ) for smoother v ∈
H1(Ω). That is, we identify H1/2(Γ) ⊂ L2(Γ) = L2(Γ)′ ⊂ H−1/2(Γ),
so γnv(γs) =

∫
Γ vnγs dS with dS denoting surface measure on Γ. See

[7, 25, 29, 48] for additional results or references.

Appendix B. Initial Value Problem

Here we review preliminary material on nonlinear operators and evolu-
tion equations in Hilbert space that will be applied to the initial-boundary-
value problem (1.2), (1.3), (1.4). Let’s recall from [7, 17, 29, 48] some
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definitions that we use throughout this paper. Suppose that H is a real
Hilbert space and denote by H ′ its dual space.

Definition B.1. The Riesz map of H is the isomorphism RH : H → H ′

determined by the scalar product, RHx(y) = (x, y)H , x, y ∈ H.

Monotone and Accretive Operators. We give the definitions of multi-
valued operators that are used to describe various boundary-value prob-
lems, particularly those containing variational inequalities.

Definition B.2. An operator A : H → H ′ is a subset of H × H ′. Its
domain is Dom(A) = {x ∈ H : [x, y] ∈ A for some y ∈ H ′} and its range
is Rg(A) = {y ∈ H ′ : [x, y] ∈ A for some x ∈ H}.
A function is identified with its graph, and operators can be regarded

as set-valued functions, i.e., A(x) = {y ∈ H ′ : [x, y] ∈ A} with inverse
A−1 = {[y, x] : [x, y] ∈ A}.
Definition B.3. The operator A is called

(1) monotone if (w1 − w2)(u1 − u2) ≥ 0 for all [u1, w1], [u2, w2] ∈ A,
(2) strictly monotone if (w1−w2)(u1−u2) > 0 for all [u1, w1], [u2, w2] ∈

A with u1 ̸= u2,
(3) strongly monotone if for some constant k0 > 0 we have (w1 −

w2)(u1 − u2) ≥ k0∥u1 − u2∥2 for w1 ∈ A(u1), w2 ∈ A(u2), and
(4) maximal monotone if there is no monotone operator that is a proper

extension of A.

The monotone operator A is maximal if and only if Rg(RH + A) = H ′,
and in that case Rg(RH + βA) = H ′ for every β > 0.

Definition B.4. The operator A is called coercive if

lim
∥u∥→+∞

{w(u)/∥u∥ : w ∈ A(u)} = +∞.

Let φ : H → IR∞ ≡ (−∞,+∞] be a proper lower-semi-continuous
convex extended-real-valued function. Its effective domain is denoted by
Dom(φ) = {v ∈ H : φ(v) < +∞}. For example, the indicator function of
the set S ⊂ H, given by IS(u) = 0 if u ∈ S and IS(u) = +∞ if u /∈ S, is
such a function when the set S is nonempty, closed, and convex.

Definition B.5. The subdifferential of φ is the operator ∂φ : H → H ′

defined by

∂φ(u) = {w ∈ H ′ : w(v − u) ≤ φ(v)− φ(u) for all v ∈ H}.
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These are a special class of maximal monotone operators.

Definition B.6. The conjugate of φ is the convex function φ∗ : H ′ → IR∞
defined by φ∗(w) = sup{

(
w(v)− φ(v)

)
: v ∈ H}.

This function is constructed so that the inverse of ∂φ is ∂φ∗, and the
three conditions w ∈ ∂φ(v), v ∈ ∂φ∗(w), and φ(v) + φ∗(w) = ℓ(v) are
equivalent. If φ is Fréchet differentiable, then ∂φ is the Fréchet derivative.
For the particular case of indicator functions, w ∈ ∂IS(u) exactly when u ∈
S and w(v − u) ≤ 0 for all v ∈ S, and this gives a useful characterization
of constraints and variational inequalities.

Definition B.7. The subgradient of φ is the corresponding operator Dφ :
H → H, which uses the scalar product to characterize its values by

Dφ(u) = {u∗ ∈ H : (u∗, v − u)H ≤ φ(v)− φ(u) for all v ∈ H}.

These equivalent notions are related by the composition ∂φ = RHDφ
with the Riesz map of H. Note that the terms subgradient and subdiffer-
ential are used inconsistently in the literature. Here we are following the
usage in [48] as described above.

Evolution Equations in Hilbert Space. Finally, we summarize fun-
damental results on the solvability of the initial value problem for an
operator A in Hilbert space H. Let C([0, T ], H) be the uniformly continu-
ous H-valued functions on the real interval [0, T ] with the usual sup norm.
Denote by Lp(0, T ;H) the space of pth-power Bochner integrable H-valued
functions on the real interval (0, T ) and by W 1,p(0, T ;H) such functions
which are absolutely continuous with derivative in Lp(0, T ;H). In partic-
ular, we recall that a function f : [0, T ] → H is absolutely continuous if
and only if f ∈ W 1,1(0, T ;H).

Definition B.8. The operator A : H → H is called accretive if (w1 −
w2, u1−u2)H ≥ 0 for all [u1, w1], [u2, w2] ∈ A and m-accretive if addition-
ally Rg(I + A) = H.

That is, A is accretive if and only if the composition RHA : H → H ′ is
monotone, and A is m-accretive if and only if RHA is maximal monotone.

Definition B.9. A strong solution on [0, T ] of the evolution equation

(B.20) dz
dt + A(z(t)) ∋ f(t) in H, 0 < t < T,
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with f ∈ L1(0, T ;H) is a continuous function z ∈ C([0, T ], H) with z ∈
W 1,1(δ, T ;H) for each 0 < δ < T and which satisfies z(t) ∈ Dom(A) and
(B.20) at a.e. t ∈ (0, T ).

The initial value problem is to find a solution of (B.20) with a specified
initial value z(0) = z0 ∈ H. If A is accretive, then any two strong solutions
z1, z2 of (B.20) with f = f1 and f = f2, respectively, will satisfy the basic
estimate

(B.21) ∥z1(t)− z2(t)∥H ≤ ∥z1(0)− z2(0)∥H +

∫ t

0

∥f1(s)− f2(s)∥H ds

for t ∈ [0, T ], and this implies that the initial value problem has at most
one strong solution. For the existence of strong solutions, we have the fun-
damental result of Kato [33]. (See Chapter III.2 of [7] or [17], or Theorem
4.1 of [48].)

Theorem B.10. If A is m-accretive, then the initial value problem of
(B.20) with z(0) = z0 has a unique Lipschitz continuous strong solution
z ∈ W 1,∞(0, T ;H) for each z0 in Dom(A) and absolutely continuous f ∈
W 1,1(0, T ;H).

The estimate (B.21) leads to the notion of a generalized solution of the
evolution equation (B.20).

Definition B.11. A generalized solution on [0, T ] of (B.20) is a con-
tinuous function z ∈ C([0, T ], H) for which there is a sequence {fn} in
L1(0, T ;H) with fn → f in L1(0, T ;H) and corresponding solutions {zn}
on [0, T ] of dzn

dt + A(zn(t)) ∋ fn(t), which converge (uniformly) zn → z in
C([0, T ], H) as n → ∞.

If A is accretive, any two generalized solutions z1, z2 of (B.20) with
f = f1 and f = f2, respectively, will satisfy (B.21).

Corollary B.12. If A is accretive, then the initial value problem for
(B.20) has at most one generalized solution. If A is m-accretive, then the
initial value problem has a unique generalized solution for each z(0) = z0
in the closure Dom(A) and each function f ∈ L1(0, T ;H).

A considerably deeper result is that Corollary B.12 is true in a general
Banach space. This remarkable result is obtained by use of the backward-
difference approximation of (B.20).
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Definition B.13. Assume that A is m-accretive and f ∈ L1(0, T ;H). Let

z0 ∈ Dom(A), ε > 0 and a discretization of f on (0, T )

0 = t0 < t1 < . . . tn−1 < tn = T, f1, f2, . . . fn ∈ H

be given for which

tk − tk−1 < ε for 1 ≤ k ≤ n, and
n∑

k=1

∫ tk

tk−1

∥f(t)− fk∥ dt < ε.

Define the sequence {zk} recursively by the backward-difference equations

(B.22)
zk − zk−1

tk − tk−1
+ A(zk) ∋ fk, 1 ≤ k ≤ n.

The function zε : [0, T ] → H with zε = zk for t ∈ (tk−1, tk], 1 ≤ k ≤ n, is
called an ε-approximate solution of (B.20).

At each step of the construction, zk is obtained from zk−1 by solving the
resolvent equation

(B.23) zk + βkA(zk) ∋ zk−1 + βkfk, 1 ≤ k ≤ n,

with βk ≡ tk − tk−1 > 0.

Theorem B.14. If A is m-accretive, then the initial value problem for
(B.20) has a unique generalized solution z ∈ C([0, T ], H) for each z(0) = z0
in the closure Dom(A) and each function f ∈ L1(0, T ;H). For each ε > 0
there is an ε-approximate solution zε with ∥z(t) − zε(t)∥H < ε for all
t ∈ [0, T ].

The generalized solution can be obtained as the uniform limit in C([0, T ], H)
of piecewise-linear-in-time interpolants of a sequence of ε-approximate so-
lutions zε, ε > 0. These necessarily satisfy zε(t) ∈ Dom(A) for 0 < t ≤ T .
(See Section IV.8 in [48] or [23].)
Additional regularity results for solutions of the evolution equation (B.20)

were obtained by Brezis when the operator is a subgradient in Hilbert
space. In that case, (B.20) is a gradient flow.

Theorem B.15. If A = Dφ is the subgradient of a proper, convex, and
lower-semi-continuous function φ : H → IR∞, f ∈ L2(0, T ;H), and z0 ∈
Dom(A) = Dom(φ), then the generalized solution of (B.20) with z(0) = z0
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is a strong solution and satisfies

(B.24)
√
tdzdt ∈ L2(0, T ;H), φ(z) ∈ L1(0, T ),

and z(t) ∈ Dom(A) for all t ∈ (0, T ].

If also z0 ∈ Dom(φ), then the solution satisfies

(B.25) dz
dt ∈ L2(0, T ;H) and φ(z) ∈ L∞(0, T ).

Theorem B.15 gives a strong solution that is more smooth than in Corol-
lary B.12 or requires data less restricted than Theorem B.10. For the gen-
eralized solution of Corollary B.12 with an m-accretive operator, informa-
tion on differentiability and belonging to Dom(A) may be lost. For thor-
ough treatments of monotone operators and semigroup theory in Hilbert
space, see [7, 17, 48].
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