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Abstract-The Stefan problem describes the conduction of heat in a medium involving a solid-liquid phase 
change at a prescribed melting temperature. Considerations of physical, mathematical and numerical 
experiences with such problems all imply that enthalpy (not temperature) is the natural dependent variable 
to specify the solution. Our discussion centers on the physical interpretation of the multi-valued Heaviside 
“function” which arises in the mathematical formulation as the fraction of water. We show that this permits 
the consideration of (possibly large) regions of mush at the melting temperature and of problems with 
internally distributed sources of heat. Moreover, in order for such problems to be well-posed, this fraction 
of water must necessarily be specified initially in the part of the region at the melting temperature. 

1. INTRODUCTION 

IN FORMULATING the Stefan problem one previously assumed that the region consisted of two 
parts, a region of water and a region of ice, and that these regions were separated initially and 
thereafter by an unknown surface, the free boundary. This restricts the data given for 
the problem. For example, the initial temperature distribution must be non-zero 
except possibly on the initial surface (of measure zero) and any distributed sources F must be 
positive in the water and negative in the ice. But these regions are not given so one assumes 
F = 0. Such situations are quite special. Indeed all geophysical applications will contain large 
regions at the melting temperature and a distributed source of (solar) heat. It is just such 
problems (as the melting of soil water, lake surfaces and exposed water pipes) which arise most 
often in applications. 

Here we shall include in our formulation of the Stefan problem a region of mush, a mixture 
of water and ice coexisting in thermal equilibrium at the freezing temperature. This 
phenomenon is consistent with the physics of latent heat. The resulting classical formulation of the 
Stefan problem contains a new unknown, the fraction of water at each point. The corresponding 
weak formulation is exactly that of the previously considered special case with no mush: 
our considerations merely give a physical interpretation of the singularity or jump function 
that characterizes the Stefan problem. 

It is worthwhile to recall the simple experiment in which one applies a uniform heat source 
of intensity F to a unit volume of ice at temperature u < 0. The temperature increases at the 
rate E;lc, until it reaches u = 0; cl > 0 is the specific heat of ice. Then the temperature remains 
at zero until L units of heat have been added; L > 0 is the latent heat. During this period there 
is a fraction % of water coexisting with the ice and 6 increases at the constant rate flL. When 
all the ice has melted, 5 = 1 and the temperature u begins to rise at the rate flcZ; c2 > 0 is the 
specific heat of water. We can summarize the above by stating that the rate of increase of heat 
energy or enthalpy u = C(U) + LZ is given by F, where the specific heat is given by C(u) = c, u 
for u < 0 and C(u) = c2u for u 2 0 and &H(u), the Heaviside graph being given by H(u) = 1 for 
u > 0, H(0) = 10, 11 and H(u) = 0 for u < 0. Thus the thermodynamic state is determined by the 
enthalpy. The temperature is obtained from the function u = (C+ LH)-‘(0) and the fraction of 
water is given by 6 = (V - C(u))/L. We shall see below that the weak formulation of the 
problem also shows that enthalpy is the natural variable to determine the state of the process. 

2. THE CLASSICAL PROBLEM 

We begin with a mathematical description of heat conduction through a medium in which a 
change of phase occurs at a given temperature; a model problem is the melting of ice in a pipe 
or porous medium. Thus let the domain G be given in Euclidean space R” and set a= 
G x (0,~). Let U(X, t) denote the temperature at the point x E G and time t > 0. The constants 
cl, c2 are specific heats and k,, k2 are conductivities of ice and water, respectively. The 
ice-water phase change occurs at the temperature u = 0; n is then separated into an ice region 
Q, where u < 0, a water region R2 where u > 0, and a mush region & where u = 0. At each 
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point (x, t) of R we introduce the fraction of water, 6(x, t); note that 5(x, t) E H(u(x, t)) in R 
where H(e) is the Heaviside graph given above. Let S, be the boundary of R, in 0 and S, be 
the boundary of & in R. At each point of S1 U SZ we denote by N = (N,, Nz, . . ., N,,,, NJ the 
unit normal oriented out of s22 or into Q. Note that this is consistent on S, n S,, the interface 
between fi, and &. 

The Stefan problem is the following: find a pair of real-valued functions 
which 

and 

c2ut - k2Au = F(x, t) in a2 = {(x, t) E R: u(x, t) > 0) 

clu, - k,Au = F(x, t) in fi, = {(x, t) E R: u(x, t) < 0) 

L& = F(x, t) in a0 = {(x, t) E R: u(x, t) = 0) 

5 E H(u) in R, 

k2Vxu. WI, . . ..N.,,)=LN,(l-[)onS2=(X12)nfl 

krV,u . (N,, . . ., N,) = - LN,t on S, = (Al,) fl R 

u(x, 0) = u,,(x), x E G 

5(x, 0) = &ix) E [0, 11 where uO(x) = 0, 

u(x, t) = g(s), s E aG, t > 0. 

u and [ on R for 

(la) 

(lb) 

(lc) 

(2) 

(3a) 

(3b) 

(4a) 

(4b) 

(5) 

The partial differential eqns (la) and (lb) are the classical heat conduction equations in the 
water (a,) and ice (fI,) regions, respectively. The fraction of water is determined by (lc) in Q0 (see 
the preceding remark) and from (2) we have 6 = 1 in a2 and 5 = 0 in f-l,. In order to interpret (3a) we 
let n be the normalized (N,, . . . , N,,,) and V be the velocity of S2 at time t in the direction of n. Thus 
dividing by (N: + . . . + Njf,)1’2 gives 

kTz=- LV(l-6) on S2. 

The heat flux from a2 determines the velocity V of the free boundary S2 by melting the fraction 
of ice (1 - 5) with latent heat L. Similarly (3b) states that the heat flux drawn across S, into R, 
is obtained from the latent heat arising from the fraction of water 6 present on S,. We note that 
on S, rl S, we can substract (3a) and (3b) to obtain the usual classical Stefan free boundary 
constraint 

(k2Vxu+ - k,V,u-) . (N,, . . ., N,,,) = LN, on S, rl S2. (3c) 

The initial condition (4) specifies the temperature at all points of G and the fraction of water 
where the temperature is zero. Note that this is equivalent to specifying the initial enthalpy, 
uO(x) = C(&(x)) + L&,(x) with &,(x) E H(&x)). The Dirichlet boundary conditions (5) or any of 
the usual constraints can be specified on JG. 

3,THEWEAKPROBLEM 

A solution of even the classical form of the Stefan problem is known to exhibit dis- 
continuities in first derivatives: such discontinuities comprise an essential ingredient of the 
solution on the surface S, tl S2. Thus we expect the solution to belong to the Sobolev space 
H’(n) and to be smooth in each of a, and R2. Such considerations of regularity of solutions 
together with experience with the usual “no-mush” Stefan problem suggest that we formulate 
an appropriate weak form of the problem. 

In order to obtain such a weak formulation, we consider a solution u, 6 of the Stefan 
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proMem (INS) for which Ql and St, are s~c~~~~~ smooth, Define K(s) = kzs for s 2 0 and 
K(s)=kls fur s<O and let tr- - C(ti) + Lf the enthatpy of the solution. We shall ~orn~~te 
(&$&)- AK(u) in the sense of dis~b~tions on a. Thus for any test function yl E fI$(Qj we 
have 

since u E ~*(~~. Since Jo is regular on Q, and !& and 5 is regular on & we obtain by Gauss’ 
~eofem 

Thus we have 

for every 9 E C$(fi) if and oniy if (I) and (3) hold. Since tt = C(u) f L& with (2) implies 
II = (C+ IX)- (Y), i.e. temperature is the identicated function of enthaIpy ti , we have 

K((C + LHy-’ (u( s, t))) = K(g(s, O), s E dG, # > 0, (8) 

We have shown that the evoh~tion eqn (6) includes soI~tio~s of the ~~~fan problem which 
begin with a region of mush as we11 as those in which a region of mush develops as a 
consequence of internal heat sources. These considerations are crucial in the corresponding 
“one-phase” problem in which u 2~0 in 511: the problem is interesting only if u = 0 in a 
subs~ntia~ portion 4 of fz, In order to describe the one-phase solution of (6) by a variational 
i~q~ty one ~~~uc~s the new ~nk~w~ ~~e~z~~g ~~~e~ w(t) = 10 tits) ds and 

Thus an ~te~tion in time of (6) y&Ids P(w) = Lfl - &:(r>). Since 6((t) E ~(~~(r~~ we obtain the 
vocation i~~ty 

P(w) =, 0, w’(t) tr: 0, P(w)( w‘(f)) = 0, t 2 0, (9) 

which c~ract~zes the solution of (6). If F B 0 in Q then the free-~nndary $ is rno~to~e so 
u(f) and w(t) have the same support. Thus f(t) E ~(w(#~~ and we have 

avower v~a~~~ inequity of evolution w~ch cha~ct~~es the solution of (6). 
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4. REMARKS 

The weak formulations we have described are equivalent to the corresponding weak forms 
of the classical Stefan problem without a region of mush. Thus we have immediately available a 
theory of existence, uniqueness and regularity of solutions as well as many techniques for the 
numerical computation of solutions, The discussion generalizes trivially to include nonlinear 
specific heats and conductivity functions in each phase as well as certain nonlinear boundary 
conditions. For existence-uniqueness theory one may see [l-3,5,7] for various approaches. 
These are based on the weak formulation of Oleinik; see f33 for a sketch of the history and 
development. For the formulation and resolution of associated v~iational inequ~i~es one can 
see [Qdf and their references. See IS] for an extensive biblio~aphy of work published from 
1965 to 1978. 
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