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l .  INTRODUCTION 

We consider a class of implicit linear evolution equations of the form 

d 
d-t J[u(t) + 5flu(t) = f ( t ) ,  t > O, (1.1) 

in Hilbert space and their realizations in function spaces as initial-boundary 
value problems for partial differential equations which may contain degenerate 
or singular coefficients. The Cauchy problem consists of solving (1.1) subject 
to the initial condition Jdu(0) = h. We are concerned with the case where the 
solution is given by an analytic semigroup; it is this sense in which the Canchy 
problem is parabolic. Sufficient conditions for this to be the case are given in 
Theorem 1; this is a refinement of previously known results [15] to the linear 
problem and it extends the related work [13] to the (possibly) degenerate 
situation under consideration. Specifically, we do not assume ~ is invertible, 
but only that it is symmetric and non-negative. 

Our primary motivation for considering the Cauchy problem for (1.1) is to 
show that certain classes of mixed initial-boundary value problems for partial 
differential equations are well-posed. Theorem 2 shows that if the operators ~ /  
and 5fl have additional structure which is typical of those operators arising 
from (possibly degenerate) parabolic problems then the evolution equation (1.1) 
is equivalent to a partial differential equation 

d 
d~ (Mu(t)) -}- Lu(t) -= F(t) (1.2) 

(obtained by restricting (1.1) to test functions) and a complementary boundary 
condition 

d 
d-~ (8,~u(t)) + 8zu(t) = g(t) (1.3) 

in an appropriate space of boundary values. These boundary conditions have 
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a precise meaning even though no regularity results are claimed for the corre- 
sponding (stationary) elliptic problem. 

The second objective here is to permit (possibly) both of the operators Jg  
and ~,¢ to be degenerate, i.e., to correspond to partial differential operators 
whose coefficients are only assumed non-negative. For the classical diffusion 
equation 

L Ik(x) ~u(~, t) ~--~ (c(x) u(x, t)) -- ~ Ox ) = F(x, t) (1.4) 

our requirements on d/[ are met if c(x) >/0 and if h(x) > 0 at each point in 
the region with (possibly) k(x)--~ 0 at specified rates as x approaches the 
boundary. 

The inclusion of such problems with degenerate elliptic parts is made possible 
by use of appropriate weighted Sobolev spaces [4,9]. In Section 3 we give 
sufficient conditions for such spaces to satisfy the structural requirements 
introduced in Section 2. See [1, 10, 11, 12] for related results with applications 
to degenerate elliptic problems. 

Examples of initial-boundary value problems to which the abstract results 
apply are given in Section 4. Specifically, we discuss the classical problems for 
the equation (1.4) in higher dimensions as well as for a third order pseudoparabolic 
equation [3] which may "degenerate" to (1.4). The last example given is a 
problem for the diffusion equation which contains a (degenerate) elliptic- 
parabolic equation on a lower dimensional submanifold in the region. Such 
problems can arise in diffusion problems with singularities [2]; our results show 
how the appropriate "strong formulation" of such a problem depends on the 
degeneracy of the coefficients. Additional results for degenerate parabolic 
equations are given in [6, 8, 14]. 

The following standard notation will be used. For an interval I of real numbers, 
Banach space 5~ and integer m/>  0, by C~(I, flY) we denote the space of m 
times continuously differentiable functions from I to 5~. Such functions whose 
ruth order derivative is H61der continuous with exponent 3, 0 < 3 ~< 1, are 
denoted by C~+~(I, 5~). 

For a complex-valued function f on the open set G in Euclidean space N% 
we denote by f a f  = f~f(x) dx the Lebesgue integral; dx is Lebesgue measure 
on G. Similarly ds is surface measure on the boundary, OG (of dimension 
n -- 1) and d~ denotes measure on the (n -- 2)-dimensional boundary of ~G. 
L~(S2) is the usual Lebesgue space over any measurable set D. Partial 
derivative in the xj-direction is given by ~j = O/~x~. The space of 
m-times continuously differentiable complex-valued functions on G is C~(G); 
such functions with compact support in G are denoted by C0~(G). Hi(G) is 
the Hilbert space of Sobolev consisting of those functions in L2(G) all of whose 
first order derivatives belong to L2(G). For information on these and related 
spaces we refer to [7]. 
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2. DEGENERATE PARABOLIC CAUCHY ~ROBLEM 

We begin with an abstract evolution equation for which the Cauchy problem 
is resolved by an analytic semigroup. 

THEOREM 1. Let W be a (complex) seminormed space whose seminorm is obtained 
from the non-negative symmetric sesquilinear form x, y ~ ~ x ( y )  associated with the 
given linear map ~/~ of W into the dual W'  of conjugate-linear continuous functionals 
on W. Let V be a Hilbert space dense and continuously embedded in W and let 
be continuous and linear from V into V'. Assume that for some real number A, 
~.//{ + ~ is V-elliptic: there is a c ~ 0 such that 

R e ( h ~  -t- ~a) x(x) ~ c II x ]l~v , x E V. (2.1) 

Then for each h e  W'  and each H6lder continuous f e C~([0, ~ ) ,  W'), 0 < 3 ~ 1, 
there is a unique u ~ C°((0, ~ ), V) such that ~ u  e C°([0, ~ ) ,  W') n C1((0, oo), W'), 
d[u(O) ~ h, and 

d ~ u ( t )  + 5Yu(t) = f ( t ) ,  t > O. (2.2) 
dt 

Proof. First note that u is a solution of (2.2) if and only if the function 
defined by v(t) ~ e-~tu(t) is a solution of the corresponding problem with 
replaced by A~g + ~ .  Thus we may take A = 0 in (2.1); the Lax-Milgram-Lions 
theorem then asserts that ~ is a bijection of V onto V'. 

Let K be the kernel of ~ ,  let W / K  be the corresponding quotient space, 
and denote by H the completion of W/K. Regard the quotient map q: W -+ W / K  
as a norm-preserving injection of W into H and denote the corresponding dual 
map by q*: H '  -~  W'. Note that q* is an isomorphism. I f  JZ0: H ~ H '  is the 
Riesz map associated with the scalar-product on H inherited from W, then we 
easily check that d2/factors according to 

d{x  = q*Jfoq(X), x ~ W. (2.3) 

In  order to simultaneously factor 5P we consider the subspace D ~ {x ~ V: 
~ x  e W'} where we identify W' C V'. Then for each x ~ D we have 

I .L, ex(y)[ ~ const.(d?dy(y))l/2, y e V. 

I f  x e K n D, then setting y = x above an using (2.1) we obtain x = 0. Thus 
K (h D = {0} and there is a unique linear map ~c¢ o of D o =~ q[D] onto H '  for 
which 

.~x  = q*-Woq(x ), x E D. (2.4) 

Finally, we define the linear map A 0 ~ d£/o1~o from D o onto H. 
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We shall verify that - -A  0 is the generator of an analytic semigroup on H. 
Since de' o is the Riesz map for H we obtain 

(-/lo x, Y)~r = dfoAox(y) = ~ox(y), x ~ Do, y ~ H. 

Setting x = y • q(z) in the above and using (2.3) and (2.4), we obtain 

(Aox, x ) n - = ~ z ( z ) ,  z ~ D ,  x = q ( z ) .  

Since .~a is V-elliptic, this shows that _d o is sectorial [5, p. 280]. From the identity 

q* o(I + -40) q(z) = + D 

it follows that I + Ao maps D O onto H, so A is m-sectorial and, hence, - -A  o 
generates an analytic semigroup on H [5, pp. 490493]. This implies that the 
Cauchy problem 

v'(t) + Aov(t ) == (q%#o)-l f ( t ) ,  t > O, (2.5) 

has a unique solution v ~ C°([0, oo), H)  c3 C1((0, or), H). For each t > 0 we 
have v(t) ~ Do, the domain of the generator, - -Ao ,  so there is a unique u(t) ~ D 
for which q(u(t)) = v(t) and 5flu(t) = q*~ov(t). The function u so obtained is 
the desired solution of the Cauchy problem for (2.2). 

To verify uniqueness, note that a solution u of (2.2) wi thf  -~ 0 and ~ u ( 0 )  ~ 0 
satisfies 

djg/u( t ) (u( t ) )  = - -2  Re .~'u(t)(u(t)) ~ O, 

so dgu( t ) (u( t ) )~  O. Thus ~q~u(t)= , /g /u ( t ) :  0 for t ~ 0 and (2.1) gives 
- 0. I 

Remarks. (1) I f  W is a Hilbert space the Theorem 1 coincides with a result 
in [13]. 

(2) We were able to factor ~-q in the form (2.4) and so obtain a function ~o.  
The preceding technique extends to nonlinear situations and others where 
~0 and -d0 may be multi-valued [3, 15]. 

Our next objective is to describe sufficient additional structure on the spaces 
and operators in Theorem 1 to permit us to characterize the solution of (2.2) 
by means of an abstract partial differential equation (1.2) and an abstract 
boundary condition (1.3). 

The Spaces. Let Wbe  a seminormed space and V1 be a Hilbert space with V1 
continuously embedded in W; V and V o C V are (closed) subspaces of V I with 
V dense in W. Thus we identify W' C V' by restriction. Denote by W 0 the closure 
of V 0 in W; then we can similarly identify W o C V 0 . The dual space W' is the 
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direct sum of W o and the annihilator of Wo, Wo z ~ {h ~ W' : h(w) ~- 0 for all 
w ~ Wo}. This is denoted by W'  = W o @ Wo ± and identifies W o as a subspace 
of W'. 

The Trace. The  trace operator 7 is a continuous linear surjection of V onto 
the Hilbert space B of boundary values. Assume V o is the kernel of 7; then the 
corresponding induced map ~: V / V  o --> B is an isomorphism by the open- 
mapping theorem. Since (V/Vo) '  is (isometrically) isomorphic to V0 ±, the dual 
of ~ gives an isomorphism 7* of B '  onto Vo ± defined by 7*(g) ~ g o 7 for all 
g e B ' .  

The Operators. Let  Y :  V 1 ~ V' be given and define the corresponding 
formal  operator L:  V 1 -+ V o by setting L u  equal to the restriction to V 0 of ~ u  
for each u ~ V1. We can define D o ~ {u ~ V I :  L u  ~ Wo} since W E C V~. Then  
for each u GD o we have L u  e W o C W '  C V' ,  so S u  - -  L u  ~ Vo±; this gives 
~q~u - -  L u  ~ 7* (~u)  for some ~zu E B' .  That  is, there is a unique ~ :  D o --> B '  
such that 

£Zu(v) - -  Lu(v)  = ~zu(yv ), u e D O , v e V. (2.6) 

Let  J/{: W---> W'  be given and define the formal operator M:  W'  ~ W 0 by 
setting M w  equal to the restriction of ~/~w to W 0 for each w ~ W. The  restriction 
of J { w  - -  M w  to V then belongs to V0 ±, hence, equals 7*(O~w) for some 
a~w ~ B' .  Thus,  there is a unique ~ :  W --+ B'  such that 

J/Zw(v) - -  M w ( v )  = D~w(yv), w ~ W,  v e V. (2.7) 

The  identities (2.6) and (2.7) are abstract Green's formulas. 

Before proceeding to our characterization of the solution of the Cauchy 
problem for (2.2), we consider the characterization of the solution of the corre- 
sponding stationary or elliptic problem. Thus,  assume we are given the spaces, 
trace and operators as above, and assume that )~d//-+- ~a is V-coercive for some 
real number  A; cf. (2.1). Then  the Lax-Milgram-Lions theorem shows that 
AJg q- ~Cz ° is an isomorphism of V onto V'. Let  d e V1, F ~ W 0 and g ~ B '  be 
given and set f ~ (~o _~ A ~ ) d - ?  F - ] - 7 * ( g )  ~ V' .  There  is a unique ~ e V 
such that (AdZ -~- 5e)~ = f ;  set u = ~ + d. Then  u is the unique solution of 

ueV1, u- -deV,  

(AJg + ~ ) u  = F +  7*(g) in V'. 

By applying the equation (2.9) to points in V o we obtain 

2 t M u + L u = F  in W o, 

hence, u ~ D O . From (2.6)-(2.10) we obtain 

A ~ u  -t- ~u  = g in B'.  

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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These computations show that the problem (2.8), (2.9) is equivalent to (2.8), 
(2.10), (2.11). In the applications below, (2.8) is a stable boundary condition, 
(2.10) is a partial differential equation in a space of distributions, and (2.11) 
is a complementary boundary condition. 

Our results on the well-posedness of the degenerate parabolic Cauehy problem 
are given in the following. 

THEOREM 2. Assume we are given the spaces, the trace, and the operators as 
above. Assume the seminorm on W is obtained from the symmetric and non-negative 
operator ~ and that, for some real number A, k//g 4- ~ is V-elliptic (cf. (2.1)). 
Let d e Cl+e([O, oo), VI) , g e C!+~([0, oo), B'), F e Ce([O, oo), W;) and h e W'.  
Then there exists exactly one u e C°((0, or), V~) with dgu e C°([0, or), W') 
0 ( ( 0 ,  co), W')  such that 

and 

J[Zu(O) = h  in W',  (2.12) 

__d Mu(t)  4- Lu(t) = F(t) in N0 
dt 

u(t) - d ( t ) e  v ,  

d O,nu(t) 4- atu(t) = g(t) in B' 
dt 

(2.13) 

(2.14) 

(2.15) 

for each t > O. 

Proof. Our plan is to apply Theorem 1 to obtain the solution of a problem 
similar to (2.2) and then to show this solution is characterized by (2.12)-(2.15). 
We may assume A = 0 just as in the proof of Theorem 1; thus, ~o is an iso- 
morphism of V onto V'. 

Since a(t )~  V 1 for each t >/0, there exists a 17(t)~ V such that ~ ( t )  ~- 
--.~d(t); the continuity of &o: V1 _+ V' and 5¢-1: V'--~ V shows that 

~ C1+8([0, or), V). Setting ul(t ) ~ £t(t) 4- d(t) for t ~ 0 gives us u 1 E 
C1+8([0, oo), V1) such that Ul(t ) - -  d(t) e V, ~ U l ( t ) ( v  ) -~- 0 for v E V, and 

d 
d-[ (dgul(t)) 4- £Pu~(t) = Jgu~(t), t ~ O. (2.16) 

Similarly, for t > /0  we haveg(t) o 9' e V' and we can define u~(t) ~ 5~-l(g(t) o y). 
Then u~ e C1+~([0, oo), V) and it satisfies 

d (~u2(t))  + ~Z'u2(t ) = Jgu'2(t) 4- g(t) o ~,, t ~ O. (2.17) 

The right sides of (2.16) and (2.17) are in Ce([0, oo), W'). Thus the function 
defined by f ( t )  =~ F(t)  - -  JZu~(t) - -  JA1u'2(t), t ~ O, belongs to Ca([0, oo), W') 

5o5/3x/3-2 
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so we may appeal to Theorem 1 for a function u 3 e C°((O, oo), V) such that 
~'ua ~ C0([0, oo), W') c~ 0 ( ( o ,  oo), w') ,  ~u~(o)  = h - -  ~u~(O) - -  ~u~(O), and 

d 
d-/(Jz.s(t)) + ~%(t)  = f(t),  t > 0. (2.18) 

Define the function u by u(t) - ~  Ul(t ) -~- u2(t ) -~ us(t ) for t ~ 0. I t  then fol- 
lows from the above that  u ~ C°((0, oo), V1) with J [ u  e C0([0, oo), W') c~ 
C~((0, oo), W')  statisfying (2.12) and for each t > 0, (2.14) and 

d 
j [  (/~u(t)) + ~u ( t )  = F(t) -k g(t) o ~, (2.19) 

in V'. 
To  establish the existence of a solution, it suffices to verify that (2.19) implies 

(2.13) and (2.15). First apply (2.19) to points in Vo ; this implies (2.13) and, 
hence, that u(t) belongs to the domain D o of the abstract boundary operator ~ .  
Thus  we may subtract (2.13) from (2.19) and use (2.6) and (2.7) to obtain (2.15). 
These  computations can be reversed to show (2.13) and (2.15) are equivalent 
to (2.19). I f  each of the functions d, g and F is zero, then any solution u of 
(2.13)-(2.15) is also a solution of (2.2) w i t h f  ~ 0; if h = 0 then the uniqueness 
result f rom Theorem 1 shows u ~ -0 .  These remarks prove the uniqueness 
for the linear problem (2.13)-(2.15). | 

3. WEIGHTED SOBOLEV SPACES 

We wish to apply Theorem 2 in situations where the ellipticity of the operator 
~o is permitted to go to zero on the boundary of the domain. Thus,  it is necessary 
to consider function spaces of Sobolev type where the norm is weighted in a 
corresponding manner.  We shall show that these spaces and their corresponding 
trace maps onto boundary values satisfy the assumptions of Section 2 when the 
degeneration of the ellipticity near each boundary point is of the order of some 
power of the distance to the boundary. This  power is between zero and one 
and may depend on the boundary point. 

Let  G be an open bounded and connected subset of Euclidean space ~ "  and 
assume it lies locally on one side of its boundary, ~G. Suppose ~G is a Cl-mani  - 
fold. Tha t  is, each point x ~ 0G has an R~-neighborhood Nx and a C ~ bijection 
~o~ of N~ onto the cube Q~ ~ {x~ R ~ : [ xj ] ~ 1} for which ~o[-N x c~ G] -= 
Q + ~ { x e Q n : x ~ > O }  and ~0[N~n~G] = Q0 ~ { x e Q ~ : x ~  = 0 } .  Let  
p(x) be the distance from x ~ G to ~G and 0 ~ c~ < 1. We first consider the space 
W(~) obtained by completing C1((7) with the norm 

, o (I + w(x),2) I 1'2 
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Here Vu denotes the gradient of u on G. This generalized Sobolev space is 
described in [4, 9]; there it is shown that the embedding W(~) c_+ L2(G) is 
compact and the trace operator y: W(a) ~ L2(~G) is continuous. 

Assume we are give n a pair of functions 

c(-), k(.) eL*(G), c(x) >/0  and k(x) >/Ep°'(x) 
(3.1) 

a.e. on G, and c(') is non-zero inLl(G) 

for some E > 0. We define V to be the completion of Ca(G) with the norm 

[] UHV E l ~  (C(X)] U(X)12 + k(x) I~u(x)]2)dxl 1/'2 (3.2) 

LEMMA 1. V C W(a) and the embedding is continuous. 

Proof. The continuity of the embedding is not lost by letting c(') and k(') be 
larger, so it suffices to prove the result for the case of c(') eL®(G) and k(x) = 
ep~(x). With these assumptions, I] ' IIv is a continuous norm on W(~) and satisfies 

II u '~i~ > ~ fo o~(x) I Vu(x)j2 dx, u ~ W(~). 

Suppose V c_~ W(a) is not continuous. Then  there is a sequence {%} in W(~) 
such that ([ v ,  ]rv --+ 0 and II % []w~) = 1 for n /> 1. W(,)  is weakly compact and 
the embedding W(~) c__~ L2(G) is compact, so by passing to a subsequence 
(again denoted by {vn}) we have weak-lira v ,  = v in W(c0, hence, in V, and 
strong-lim %~-= v in LZ(G). Since ]1" ilv is weakly lower semicontinuous we 
have i] v ilv ~ lim infrl v~ [Iv = 0. This shows v = 0 so % -+ 0 in L=(G). The  
above implies that v~--> 0 in W(~), a contradiction. | 

Consider hereafter the restriction of the trace operator from W(~) to V; 
Lemma 1 shows that Y: V -~ L2(c~G) is continuous. Define K o to be the closure 
in V of the subspace Co~(G) of test functions on G. We clearly have Vo C ker(y), 
the kernel of y, but we need the equality V 0 = ker(y) to apply Theorem 2. Thus  
we shall seek conditions on V which imply V 0 D ker(7 ). 

We first consider the special case of the half-space, G = Q+ , let u a ker(y) 
with the support of u contained inside Q; our objective is to prove u E V 0 . Each 
x a Q+~ is denoted by x = (y, x,~) with y c Qn-1 and O < x~ < 1 ; set k(x) = 
k(y,  x~). For integer j / >  1, choose the function 0~ ~ CI(N) to satisfy Oj(s) ~ 0, 
s <~ l/j, O~(s) ~- l, s >~ 2/j, and 0 ~< O~(s) <~ 2j. Since the product Oj(x~) u(y, x,~) 
has support in Q+n it follows by a standard mollifier approximation that O# ~ V o . 
Thus  it suffices to show 

1.im(0~u) u in  V. j--* o~ 
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Since ca/~u ~L2(Q+ ~) we obtain 

O~(d/~u) = d/~(O~u) -+ ct/~u in L2(Q+ ") 

by dominated convergence. Similarly, for 1 ~ i ~ n - -  1, 

in L2(Q+"). 

Also we have 

and 

(Oju) = kl/ZO~u @ kl/20j Ou kl/2 ~ n  "~Xn ' 

kl/zO~ ~u --+ kl/2 Ou in L~(Q+~), 

as before, so it suffices to show 

kl/20;u --+ 0 in L~(Q+n). (3.3) 

Since ~,(0) = 0 we obtain for (y, x,)  ~ Q+'~ 

f; " ~u(y, t) dt = f:" 1 Ou(y, t) dr, u(y, x.) = ~x. kl/Z(y, t) kl/Z(Y' t) Ox. 

and the Cauchy-Schwartz inequality gives 

ff"+ dt ff'+ l u(y, x+)l z <~ k(y, t) k(y, t) { O,~u(y, t)[ + dt. (3.4) 

t 2 Setting ~(y, x.) = (Oj(x~)) k(y, x~) fo ~ dt/k(y, t), we multiply (3.4) by (O~)2k 
and integrate to obtain 

fo /j (O}(x~)) z k(y, x~) l u(y, x.)I 2 clx~ 

f2 2 <~ ~(y, x.)  k(y ,  t) I 8.u(y,  t) l  ~ dt dx.  . 

Interchanging the order of integration shows this last term equals 

fo~/j f2/~ ¢(Y, x~) dx.(k(y, t) ] ~.u(y, t)[ ~) at 
c t  
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and thus we have 

1 / 2 (Oj(x,)) k(y ,  x~) [ u(y, x,)[ 2 dx, 

2/j f2/J sup f 4J(~, xn) dx,  " k(y ,  t) I a.u(y,  t)l z at. 

Integrating this inequality over Q~-a gives the estimate 

fo+" (o'~)~ k(x) I u(x)l ~ dx 

<~ sup ~ '  ~(~, x.) dx.. f hCx) l ~.u( ,) l  2 dx. 
¢~On -1 "0 a On~l+[O,2/j] 

Thus,  for (3.3) to hold it is sufficient to have 

f ~ "  d x n < o o .  
2/5 dt 

sup (O;(xn)) 2 k(y,  x,)  h(y, t) 
y~On -1 ~0 

j>O 

But we note that 0j ~< 2j so we need only to show that for some constant K 

k(y,  x,)  ~ dx,  <~ K f  , j >/ 1, y e Q"-a. (3.5) 
~o k(y ,  t) 

A sufficient condition for (3.5) can be described as follows. Suppose there are 
a pair of positive constants c o , c~ and a function ~(.): Q~-I __~ N with 0 <-~ 
~(y) < 1 for each y ~ Qn-1 such that 

cot'(v) ~ k(y,  t) ~ cl t~u), 0 <~ t <~ 1. 

Then  the left side of (3.5) is bounded by 2q/c0(1 - -  ~(y))j2, so for (3.5) to hold 
it is sufficient to have 

0 ~< ~(y) ~< ~ < 1 

for all y e Q~-I. The  preceding proves V 0 = k e r  y in this essential special case. 
T h e  general situation will now be described. 

THEOREM 3. Let the bounded domain G be given as above and let 0 <.~ cz < 1. 
Suppose there is a function ~(') on ~G for which 0 ~ ~(s) <~ ~ for each s ~ 9G. 
Assume the functiom c(') and k(') are given and satisfy (3.1). Furthermore, suppose 
there is at each point of ~G a neighborhood N in ~ and constants 0 < c( N)  < C( N )  
such that 

(i) for each x ~ N n G there is a unique x o ~ ~G such that [I Xo --  x [In. = p(x), 
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and 

(ii) for each x ~ N c3 G, 

e(N) ~ k(x)/(o(~)) ~(~o ~ C(N). (3.6) 

Define V~,~ to be the Hilbert space obtained by completing CI(G) in the norm 
(3.2). Then there is a continuous trace map 7 of Ve, ~ into L2(OG), determined by 
7(u) : u [a for u ~ CI(G); the kernel of 7 equals Vo, the closure in V of C0~(G); 
and the range of 7 is dense in L2(~G). 

Proof (continued). By a partit ion-of-unity and corresponding coordinate 
transformations the general situation is reduced to the special case above. See 
[9, pp. 749-750] for the relevant details. Thus  we have that ~, is defined and 
continuous and that its kernel is as claimed. In  order to prove the claim about 
the range Rg(7), it suffices to show for the special case G = Q+n that Rg(y)D 
c0°~(Qn-1). But if rp ~ C0°~(Q ~-1) and ¢ ~ C0°°(--1, 1) satisfies ¢(0) = 1, then 
~(y) ¢(x~) ~ u(x) (x = (y, x~)) belongs to V and 7(u) = ~. II 

Remarks. (3) Since ~G is a Cl-manifold, the condition (i) in Theorem 3 is 
already true for neighborhoods chosen sufficiently small. 

(4) T h e  dual space V~ is a space of distributions on G; we can identify 

v0 c ~'(c). 
(5) We shall define B to be the range of 7. I t  suffices for our purposes to 

note that B CL2(~G) C B' ;  a more precise description of B can be given e.g., 
when ~(s) = ~ for all s e ~G [4]. 

4. EXAMPLES 

We present some applications of the preceding results to a variety of initial- 
boundary value problems for partial differential equations. The  objective is to 
illustrate various types of problems which can be included so we do not a t tempt  
the most general results in any sense. T h e  examples include the elliptic-parabolic 
equation (1.4) subject to boundary conditions of first, second or third type, 
a parabolic-pseudoparabolic equation, and a problem with elliptic-parabolic 
constraints on a submanifold. In  the following, the domain G in N ~ and the 
functions c(-) and k(') are as given in Theorem 3. The  unit  outward normal 
vector on ~G is denoted by v. 

(a) Elliptic-parabolic equation. L e t / ' 0  and / ' 1  be disjoint measurable subsets 
of OG whose union equals 9G. Let  Va = V~.~, Vo be the closure of Co~(G) in 
V~.~, and V be the subspace of those v E Vx (with trace) satisfying v = 0 a.e. 
on 1~o . Since the trace operator is "local" we can identify B C L 2 ( F 1 ) C B '  



INITIAL-BOUNDARY VALUE PROBLEMS 307 

where B is just the range of the trace on V. Let a eL®(/'1) with cr(s) ~ 0 a.e 
on F 1 and define 

~u(v) - fo k(x) w(x) -  W(x) ax + fa ~(s) ~(s) ~(s) as, ~, ~ ~ v l .  

The corresponding formal operator is given by 

and the complementary boundary operator in (2.6) is given by 

for those u sufficiently smooth. Here 8u/Sv is the directional derivative along 
the outward normal v. Let W be the seminorm space consisting of Vc,~ with 
the seminorm induced by 

~u(v)  ~ fo c(x) u(x) v(x) &, u, v ~ W ~ G,~.  

Then V 0 is dense in W so W o = W, 0~ = 0, and the formal operator is 

M ~  = c(.) ~(.). 

Note that W' -= W o =- {cl/2v : v EL~(G)}. 
Assume the following data is given: 

H ~L~(G), f ~  C~([O, o~), L2(G)) 

d~ C*+~([O, oo), V~,,,), g ~ C*+~([O, oo), L2(F,)), 0 < 3 <~ 1. 

Then set h(x) = cl/2(x) H(x) ~ W'  and F(t) = c*/2(')f(t) for t >/0. From 
Theorem 2 we obtain existence and uniqueness of a solution to 

fim{c~/2(') u(-, t)} -= H(.) in L2(C), (4.1) 

3--[ (c(x) u(x, t)) --  ~ ~ (k(x) ~ !  = ca/2(x)f(x, t) in ~ '(G) 
j=l  (4.2) 

u(., t) -~ d(., t) in L2(Fo), (4.3) 
and 

k(-) 8u(', t) ~ + a(.) u(., t) = g(., t) in L~(Fa) (4.4) 
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Note that (4.3) is the non-homogeneous boundary condition of first type and 
(4.4) is of second type (a(s) ~- 0) or third type (a(s) > 0). See [6, 8, 14] for 
related results. 

(b) Parabolic-pseudoparabolic equation. Let the space /71, V, Vo, B and 
the operator ~ be given as ill (a). Let m eLI(G) satisfy 

0 • re(x) ~-~ Klk(X), a.e. x e G; (4.5) 

set W -~ Vc,~ and define 

~u(v) =_ f~ (c(x) u(x) v(x) + ~(x)  Vu(x) • w ( x ) )  dx, u, v e w .  

The formal operator M: W--~ W o is 

Mu = cu -- m(x) e ~ ' (a)  J=l - ~ J  

and the complementary boundary operator is given by 

0u q 

on smooth functions. Assume we are given the following data: 

H e L2(G), d ~ 0+8([0, oo), Vc.~), g e 0+8([0, oo), L~(/'~)), 

and 

fj ~ C~([O, oo), L2(G)), 0 < j <~ n, 0 < 3 <~ 1. 

Set h(-) = cl/2(.)H ~ W' and 

F(t)(v) ~ fo (cl/Z(x)f(x' t) v(x) 

+ ~ ml/2(x)f~(x, t) Or(x) ax, t >/o, v ~ w. 
j=l OX~ 

Then Theorem 2 applies to the problem consisting of the initial conditions (4.1) 
and Omu(', 0) ---- 0 in Wo ±, the equation 

--Ot~ (c(x) u(x, t )--  ~ c~(\/(x)_~_~_j Ou ))__ ~ 0 ( ~3u )/ 
j=l ~=i 

= ~-~(x)f(x, t) - i ~ (m-~(x)/j(x, t)) in ~'(G), (4.6) 
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and the boundary conditions (4.3) and 

(m(.) ~u(', t) ] 3u(-, t) 8-)- 0v ] + k(-) ~ + a(.) u(',  t) = g(-, t) in B' .  (4.7) 

Note that the initial condition (4.1) is attained in a stronger seminorm in (b) 
than was so in (a). Also, the boundary condition (4.4) contains only terms 
belonging to L~'(/'I) whereas the terms in (4.7) belong to the larger space B' .  
See [3, 13] for related results and applications. 

Remarks. (6) By use of the change of variable used in Theorem 1 it follows 
we may weaken the assumptions on k(-) and m(')  in this example. Specifically 
we can drop (4.5) and replace (3.6) by a similar estimate with m q- k substituted 
for k. I f  re(x) ~ O, this is a weaker hypothesis. 

(7) I f  we have the estimate 

0 ~ re(x) ~ K2p(x) ~1, x ~ G 

for some ~ >/ 1, t henW o = W (see [4]) and ~,,, = 0. Then  (4.4) and (4.7) are 
equivalent. 

(c) Singular Surface. Suppose the domain G and the partition N0, F 1 of 
~G are as above; l e t / ~ C  _F' 1 be an n -  1 dimensional Cl-manifold which for 
simplicity is flat. Tha t  is, _F' C N.-1; assume OF' is a C 1 manifold of dimension 
n - -  2 and I '  lies locally on one side of BP. Denote by v r the unit outward 
normal to Y' along Of'. Suppose we are given a pair of non-negative functions 
c ffL~°(]'), k ~LI(/") and k satisfies estimates on _F' analogous to (3.6). Let  V~(/') 
be the Hilbert  space obtained by completing CI(_P) in the norm 

II w lit = fr  (J w(t)J 2 + k(t) I V0w(t)t 2) dtl/~ 

where V o is the gradient in the n - -  1 variables o n / ' .  Thus,  Theorem 3 describes 
the trace of  gk(F  ) into L2(O/~). 

For  our Hilbert  spaces we take V 1 ~ {v ~ HI(G) : v [ r a  V~(F)} with the norm 
([[ v I[Hl(a) ~ q- [[ v [Iv2) 1/~ and V ~ {v ~ g : v Ir ° --~ 0}. The  closure in V of Co~(G) 
is the usual Sobolev space Hol(G), and the range of the trace operator on V is 
given by B ~ {w ~ H1/2(/~a) : w Ir E V~(_P)}. 

Let  W be the space V 1 with the scalar-product 

~ u ( v )  ~ u(x) v(x) dx + c(s) u(s) v(s) ds, u, v e W,  
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and corresponding operator ~d(: W--+ W'. Then  we have W o = LZ(G), M u  = u 
on G and O,,~u ~ cu o n / ' .  Finally, we define 

_= f .  vu.  w dx + fF k(s) Vo,,. ds, u, a .  

The  formal operator is given by the Laplace operator, Lu  = - - A u  ~ H-a(G),  
and the complementary boundary operator by 

-~v ~ + k(s) Vou • Vo~ ds, u e Do, w e B 

where ~u/Ov ~ H-1/2(1~1) =-- HI/~(Y~) ' is a distribution on F 1 . (RecaI1 that Co°~(/'~) 
is dense in H1/~(/'~); see [7, p. 60].) The  function k is extended as zero from _P 

t o  -P1 • 

An essential point of this example is the characterization of the solution of 
the equation ~tu = g in B '  (cf. (2.15)) so we do the computation in the simpler 
(stationary) case. Thus  let g~ ~L2(FI) and go~LZ(~l  ' )  be given and define 
g ~ B '  by 

g(w) =~ ~l f -  g~(s) w(s) ds + -of°r g0(~) w(~) d~, w ~ B. (4.8) 
x 

(We denote by "w(~)"  the trace on ~f '  f rom Ve(/'). ) Consider a solution u of 

azu(w) = g(w), w e B. (4.9) 

Since (4.9) holds for all w ~ Co®(f'l) we obtain 

au 
& V o • k You = gl in H-~/2(FI), (4.10) 

where V o is the divergence on F C N~-1. When this is substituted in (4.9) there 
follows 

au(~) ~a~ go(~) w(~) a~, ~ e B. fa~ k(t:) w(t:) at: = 

Thus  we can show that (4.9) is equivalent to (4.10) and 

~U 
k ~ = go in L2(OF) (4.11) 

ov r  

in the same sense that (2.9) is equivalent to (2.10) and (2.11). The  operator on 
the left side of (4.11) is the complementary boundary operator constructed f rom 
the operator 0l and the trace of Vk(F) into L2(~£'). 
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Assume the following data is given: 

[11 eL2(G), Hz eL2(;'), 

F e C~([O, o0), L~(G)), 0 < ~ <~ 1, 

d e c1+~([0, oo), v1), 

g:t e C1+~([0, oo), L2(FO), go e Cl+a([0, or), L2(ST')). 

Then define h e W' and g e C!+a([0, oo), B') by 

h(~) - fo H~(~) ~(~) d~ + f~ ~.~(s) H~(s) ~(,) as, w ~ v~ , 

g(t)(w) ~ fr  g~(s, t) w(s) ds + f~rgo(~, t) w(~) d~, w e B ,  t ~ O. 

Recall that the embedding L 2 ( T ' I ) ~  B and the trace map B--~L~(81 ") are 
continuous. Theorem 2 shows there exists a unique solution to the problem 
(2.12)-(2.15) with the data given above. Thus, we have shown that the following 
problem is well-posed: 

lim u(x, t) = H~(x) in L2(G), lim c~/2(s) u(s, t) = H2(s ) in L2(F), (4.12) 
t->O t--~O 

8 
8-i u(x, t) -- Au(x, t) = F(x, t) in LZ(G), t > 0, (4.13) 

u(s, t) = d(s, t) in L2(Fo), t > 0, (4.14) 

8 8~(s, t) Vo .(k(s) Vou(~, t)) 

= gl(s, t) 

8u(~, t) 
k(~) Sue - -  go(s e) in 

in H-1/~(F1), t > 0, (4.15a) 

L2(SP), t > 0. (4.15.b1 

In the same manner one can handle similar problems where the submanifold/" 
may extend into the interior of the region G. (See [14] for the details.) 
Such problems arise from models of diffusion in a region G in which the sub- 
mani fo ld / '  approximates a narrow fracture of width w(s) at each s e / '  [2]. Then 
the coefficients c(s) and k(s) both contain a factor of w(s) and therefore must 
be allowed to vanish as s -+ 82'. Thus the degeneracy arises from the geometry 
of the problem as well as (possibly) the properties of the material. 

Remark. (8) When c(s )= cw(s) and k ( s ) =  kw(s) for c, k > 0 as above, 
we have shown the characterization of the solution includes the boundary 
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condition (4.15.b) so long as the width satisfies (3.6) on _P, i.e., does not vanish 
too quickly along ~/'. Conversely, if w satisfies the estimate 

0 <~ w(s) ~ K~ dis@, ep)~l, s • / "  

for some al >~ 1, then Co~(2'1) is dense in B [4] and (4.9) is equivalent to (4.10). 
(Cf. Remark 7.) Then  (4.15.b) is deleted from the statement of the problem. 
This  important distinction of the two eases can be expressed locally on a_P and 
seems to have not been observed before. 
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