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REGULARIZATION AND APPROXIMATION OF SECOND
ORDER EVOLUTION EQUATIONS*

R. E. SHOWALTER?

Abstract. We give a nonstandard method of integrating the equation Bu"+ Cu’+Au =f in
Hilbert space by reducing it to a first order system in which the differentiated term corresponds to

energy. Semigroup theory gives existence for hyperbolic and for parabolic cases. When C cA, e >= O,
this method permits the use of Faedo-Galerkin projection techniques analogous to the simple case of a
single first order equation; the appropriate error estimates in the energy norm are obtained. We also
indicate certain singular perturbations which can be used to approximate the equation by one which is
dissipative or by one to which the above projection techniques are applicable. Examples include
initial-boundary value problems for vibrations (possibly) with inertia, dynamics of rotating fluids, and
viscoelasticity.

1. Introduction. Let A and C be continuous linear operators from a Hilbert
space V into its antidual V’. Let W be a Hilbert space, of which V is a dense
subspace continuously imbedded, and let B be continuous and linear from W to
W’. We naturally identify W’ with a subspace of V’ and use .,. to denote the
various dualities.

Problem 1. Given U V, U2 W, f C((0, (x3), W’), find u C([0, c),
V) fq C((0, ), V)fq Ca([0, ), W) fq C2((0, ), W) such that u(0)= u,
u’(0) u2, and

(1.1) Bu"(t)+Cu’(t)+Au(t)=f(t), t>0.

We shall rewrite this as a first order system. Define the Hilbert product spaces
VI V V, V, V W and the operators

M(xI, x2):(Ax1, Bx2), L(xI, x2)(-Ax2, AxI +CX2)
from V,, to V and Vl to V’, respectively. If u is a solution of Problem 1, then
w--(u, u’) is a solution of the next problem.

Problem 2. Given (u l, u2) V,,, f 6 C((0, oo), w’), find w C([0, ),
V,,)f3 C((O, c), Vm) such that w(0)= (Ul, u2) and

(1.2) Mw’(t)+Lw(t)--(O,f(t)), t>0.

Our plan is as follows. In 2 we obtain existence and uniqueness results
under hypotheses which imply that Problems i and 2 are equivalent. Examples of
initial-boundary value problems to which our results apply are given in 3.
Approximate solutions are obtained in 4 from standard Faedo-Galerkin projec-
tion techniques. When C= cA, e >=0, the L-projection factors into the A-
projection onto a subspace of V; then we can give energy norm error estimates for
models of finite-element subspaces when A is an elliptic operator of order 2.
Finally, in 5 we examine the error resulting from certain perturbations of (1.1)
into more regular models which are parabolic. In certain models these regulariza-
tions represent artificial viscosity or artificial inertia.
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2. Existence and uniqueness. We shall seek hypotheses for which Problem 1
is well-posed. Recall that the operator A V V’ is monotone if Re (Ax, x)>=O,
x V, and symmetric if (Ax, y)= (Ay, x), x, y V. Such an operator induces a
seminorm I]xl[ =(Ax, x)/, x V, and we have a Cauchy-Schwartz inequality

I<ax, Y>I <-IlxllollYll, x, y V.

Let u be a solution of Problem 1. IfM is symmetric, then w --- (u, u’) satisfies

(2.1) Dt(Mw(t), w(t))+ 2 Re (Lw(t), w(t))- 2 Re if(t), u’(t)),

so we obtain

(2.2) (Mw(t), w(t)}+2 Re (Lw, w}=(Mw(O), w(0)}+2 Re (f, u’}.

This is equivalent to the identity

{Au(t), u(t)}+{Bu’(t) u’()}+2 Re (Cu’, u

(Au(O) u(O)}+(Bu’(O) u’(0)}+2 Re {f, u

Suppose B is also monotone, and denote by I1" IIw, the norm on the Hilbert space
W,which is the antidual of Wwith the seminorm induced by B. The last term
in (2.1) is bounded by

where T>0 is arbitrary, so (2.1) gives

D,(e-t/r(Mw(t), w(t)))+ e-’/7"2Re (Lw(t), w(t)) <-

Integrating this inequality gives the a priori estimate

fOt fOt2(2.3) (Mw(t), w(t))+2 Re (Lw, w)<=e(Mw(O), w(0))+ Te

0<t<T.

We summarize the above as the following proposition.
PROPOSITION 1. Let u be a solution of Problem 1 on the interval [0, T] and

assume that A and B are symmetric and monotone. Then we have

(Au(t), u(t))+(Bu’(t), u’(t))+2 Re (Cu’, u’)

<=e(Aua, u)+e(Bu2, ue)+ Te O<-_t<= T.

From the representation u (t) u +0 u’ by the (strong) integral in W and the
fact that I1 is a continuous seminorm on W, it follows from Ilu’ll -0 on
that Ilull i constant on [0, T]. This gives the following proposition.

POPOSTION 2. Let A and B be symmetric and monotone and let C be
monotone. If u is a solution of Problem 1 on [0, T] with u u2 0 and f(. O,
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then

I]u(t)[]a =]]u(t)]lb --0, 0 -< -< T.

Thus, there is at most one solution of Problem 1 /f ker (A)T)ker (B)= {0}.
We could continue to permit B to be degenerate as in [15]; it would be

necessary to modify the definitions above and work in dual spaces but nothing
essential is changed. For the remainder of this section we shall assume B is
W-coercive:there is a c > 0 such that

I1 , w.
This holds, for instance, if B V V’ is given symmetric and (strictly) positive and
if W is the completion of V with the norm {. {b-

We consider the question of existence. In addition to the hypotheses of
Proposition 2, assume A is V-coercive and B is W-coercive. Define D
{x V Lx V}. Since A and B are isomorphisms, M is also, and we can define
an operator N:D V by N=M-o L. Note that (x, y) (Mx, y) gives an
(equivalent) inner product on Vm for which we have the identity

(Nx, y) (Lx, y), x 6 D, y 6 .
It follows that N is accretive:

Re (Nx, x) O, x D.

To show that -N generates a strongly continuous semigroup of contractions on
V, it suffices to show that A +N is onto Vm for every A > 0. But this is equivalent
to the following lemma.

LEMMA 1. AM+L maps D onto V for every > O.
Proof. Let f e V’, f2 W’. Since A is V-coercive, so also is A + AC+ A 2B,

and each maps onto V’, so there exist Xl, xz e V for which

(A + AC+ A2B)x2 Af2-fl
AAx Axe +fl.

It follows that Ax14-Cx2---ABx24-f2EW’, hence (xI, x2) ED, and that
(AM+ L)(xl, x2) (f,, f2).

Our first existence result follows directly from the preceding discussion and
standard results on the generation of semigroups [9].

PROPOSITION 3. Let A be symmetric and V-coercive, B be symmetric and
W-coercive, and C be monotone. If U l, U2 V with Au14-Cbl2 W and if.f 6
C([0, oo), W’) are given, then there is a (unique) solution of Problem 1. The
equation (1.1) is satisfied up to the initial time" (u, u’) C1([0, oo), Vx W). From
this it follows that (u, u’) C([0, oo), Vx V).

PROPOSITION 4. In addition to the hypotheses of Proposition 3, suppose that
C+ AB is V-coercive for A > O. If U V, u2 W and f :[0, oo) W’ is H61der
continuous, then there is a (unique) solution of Problem 1.

Proof. For each A > 0 and x (Xl, x2) 6 D we have

Re ((A + N)x, x),, A(Axl, Xl) +((AB + C)x2, x2),
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so A +N is V-coercive and, hence, sectorial. Thus, -N generates an analytic
semigroup [9].

In the situation of Proposition 4, either the equation is irreversible or N is
bounded, i.e., V W [7]. In particular, Proposition 4 applies to parabolic prob-
lems while Proposition 3 is appropriate in the hyperbolic situation.

3. Examples. We illustrate some of our preceding results with initial-
boundary value problems which occur in various applications. These existence-
uniqueness results are far from best possible, but will serve as models for our
following work.

Let G be a nonempty open set in " lying on one side of its smooth
(n-1)-dimensional boundary, OG. H(G) is the Hilbert space of (equivalence
classes of) functions in L2(G), all of whose (distribution) derivatives of first order
belong to L:(G). The inner product is given by

j=O

where D, 1 j n, denotes a partial derivative and Do is the identity. Let Fo be an
open subset of OG and F OG Fo. Let V be that subspace of H(G) consisting
of those functions whose traces vanish on Fo. We shall denote the gradient
V =(DI,"" ", D,) and Laplacian A =i=D as indicated. Also, v will
denote the unit outward normal on OG, and D, V u is the directional normal
derivative. See [12] for details.

Example 1. Define A V V’ by

f v. v, ,(A, V.

For each 6 V, the restriction ofA to the space (G) is the distribution -A.
Regularity theory for elliptic equations shows that Green’s formula

(A, ) (-A)+ O
G

is meaningful whenever A LZ(G). Take W= LZ(G) and (B, ) (, $)c().
Let R 0 and r 0 be given and define

(C, )=R +r , ,6 V.
G

Finally, let F(x, t) be a real-valued function in C(x[0, )) and set f(t)=
F(., t), t0. Propositions 2 and 3 show that for each pair ul, uz V with
Au L2(G) and Du+ru2=O on F1 there is a unique generalized solution
u u(x, t) of

Du + RD,u Au F(x, t), x G, 0,

u(x,O)=u(x), D,u(x, 0)= Ul(X),

u(x, t) O, x Fo,

Du(x, t) + rDu(x, t) O, x F1.
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This hyperbolic problem is the classical wave equation with weak dissipation
distributed through G(R > 0) or along OG(r > 0).

Example 2. Let A and B be as above and set

(c, 0)--

where 0. Propositions 2 and show that for each pair u V and uL(G)
there is a unique generalized solution u u(x, t) of

DZt u e AD,u Au F(x, t), x G, > O,

u(x, O)= ul(x), D,u(x, 0)= Uz(X),

u(x, t) O, x Fo,

D(u(x, t) + eD,u(x, t)) 0, x 6 F.
This is a parabolic problem arising from certain models in classical hydrodynamics
or viscoelasticity. Strong dissipation results from the presence of the positive
constant e which represents viscosity in the model [8].

Example 3. Take A as above but set C 0, W V, and define

(Bo, O> (oq, + eVo- 7q), o, 4’ V,

where e >0. Let G(s, t) be a real-valued function in CI(F x[0, )) and define
f:[0, o) V’ by

(f(t), qg) f F( t)q + Io G( t)qg, qg V.

Then either of Propositions 3 or 4 shows that for each pair u, u2 V there is a
generalized solution u u(x, t) of

DZu-e ADZu-Au =F(x, t), x G,

u(x, O)= u(x), D,u(x, O)= uz(x),

u(x, t) 0, x Fo,

D(u(x, t) + eD2 u(x, t)) G(x, t), x 6 F.
This problem arises in classical vibration models in which e represents inertia
[13, 278].

Example 4. Here we choose W-- V and C 0 as before, but define

I vo. vq,, , 4, v,(B,

{Aq, q} a DqDfi + bOnqD

where a _->0 and b_->0. Define f as in the preceding example. From either of
Propositions 3 or 4 (and possibly after an exponential shift to obtain an equivalent



466 R.E. SHOWALTER

problem with A replaced by the coercive A + A2B) we obtain for each pair u l,

u2 V the existence of a generalized solution u u(x, t) of the problem
n--1

aO ,u 20 .u t,O u t), x (;, >-_ o,
j=l

u(x, 0)= Ul(X), D,u(x, 0)= u2(x),

u(x, t) O, x F0,
n--1

D,(D2tu)+a ,iD.iu+b,,,D,,u=O, xF1.
j=l

Such problems arise in models of "fat bodies" of homogeneous incompressible
fluid in rotation. These include the internal waves in which the term with b > 0
results from the rotation while that with a >0 is contributed by a vertical
temperature gradient [10, 6]. Similarly, certain models of wave motion in a
rotating stratified fluid [17] lead to the equation

(Dr + D1)2 zu + dDu O.

An elementary change of variable reduces this to the form above.
Various models of diffusion processes lead to problems gimilar to Examples 3

and 4 but with D,2 replaced by D, and without the initial condition on D,u(x, 0).
These are resolved as Problem 2 with M= B and L A in the respective
examples 14].

Many other similar problems arising from models of waves in fluids or solids
could be added. If one considers transverse vibrations (instead of longitudinal
vibrations) of rods, then we obtain problems like Examples 1 and 3 but with Au
replaced by A2u. Consideration of shear forces could add a term A2u to Example
3. Finally, we mention the models of coupled heat-sound systems and plate
vibrations which lead to systems in the form of (1.1) in which the operators are
2 x 2 matrix-operators. Our results apply to these as well.

4. Approximation by projection. In order to describe the approximation
methods we shall discuss, we denote as indicated the following forms"

a(x, y)=(Ax, y), c(x, y)=(Cx, y), x, y V,

b(x, y)= (Bx, y), x, y e W,

m(x, y)= (Mx, y), x, yeV,,,=VxW,

l(x, y)= (Lx, y), x, yeV=VxV.

These forms permit a weak formulation of Problem 2.
LEMMA 2. If W( is a solution of Problem 2, then

(4.1) m(w’(t), v)+l(w(t), v)=((O,f(t)), v), v6 V, t>0.

Let S be a closed subspace of V. We shall consider an approximation of w(.
by a function W" [0, oo) S x S which satisfies

(4.2) m(W’(t), v)+l(W(t), v)=((O,f(t)), v), v6SxS, t>O,
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and for which W(0) is specified below. We note that if U:[0, oo)- S is the
corresponding approximation of a solution u of Problem 1, i.e.,

(4.3) b(U"(t), v)+c(U’(t), v)+a(U(t), v)=(f(/), v), vS, t>0,

then the pair W= (U, U’) satisfies (4.2). If ker (A) {0}, then (4.2) and (4.3) are
equivalent. When S has finite dimension, (4.3) is the expansion method of S
(Faedo [5]).

We obtain error estimates in the energy norm IIx[I,, re(x, x)1/2 by comparing
each of w(. and W(. with the pointwise L-projection W(t) of w(t) onto $ S:
for each t>0, W(t)SS is defined by

(4.4) l(W(t), v) l(w(t), v), v S x S.

From (4.1), (4.2) and (4.4) we obtain for each v e S x S,

m(w’(t)- W’l(t), v)= m(W’(t)- W’(t), v)+ l(W(t)- W(t), v).

Setting v W(t)- W(t) and using the monotonicity of L give

DtIIW(t)- Wl(t)ll2,,<--21lw’(t) wl(t)ll,,llW(t)-

Since the function t- w(t) W(/)]I,, is absolutely continuous, hence, differenti-
able almost everywhere with

DtllW(t)- Wl(t)ll2m 211W(/)- W(t)llmO,llW(t)- Wl(t)ll,,,

we obtain the estimate

(4.5) O,(llW(t)- W(t)ll)[Iw’(t)- w’(t)llm

off of the set of > 0 for which w(t)- W(t)[I, 0. But (4.5) trivially holds at an
accumulation point of this set, and there are at most a countable number of
isolated points of this set, so (4.5) holds almost everywhere on (0, oo). Integrating
(4.5) yields the following lemma.

LEMMA 3. LetA andB be symmetric and monotone and let Cbe monotone. If
u is such that w e C([0, oo), Vt)(cf. Proposition 3) and if w’, W’ e L I((O, e), V,,,) for
some e > O, then

IIw(t)- W(t)lim llW(0)- W(0)ll + IIw’-
If the initial value W(0)e S x S is chosen by M-projection, i.e.,

m(W(O), v)= m(w(O), v), veSXS,

then IIw(0)-w(0)llm so the triangle inequality yields

w(o)- w,(o)ll, mllw(O)-

If W(0) is chosen by L-projection (4.4), then W(0)= W(0) and the preceding
estimate holds trivially. Either way we obtain the following proposition.
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PROPOSITION 5. In the situation of Lemma 3, if W(0) is chosen by M-
projection or by L-projection, then

(4.6) Ilw(t)- W(t)llm llw(t)-- W(t)ll + 2llw(0)- w(0)ll + IIw’- w’,ll,

Thus, the error in approximating (4.1) by (4.2) is determined by the error in
the corresponding stationary Galerkin approximation (4.4).

Hereafter we restrict our attention to the case of C cA, e >-_ O, for then (4.4)
factors into a pair of A-projections of V onto S. That is, denoting the error by
e(t)- w(t)- W(t) , we see that (4.4) is equivalent to (j 1, 2)

(4.7) a(ej(t), v)=0, v6S, t>-O,

so Ut(t)(U’t(t)) is the A-projection of u(t) (respectively, u’(t)) onto S, where
Wt(t)=(U(t), U’l(t)), t>-O. This gives

Ilu(t)- Ul(t)ll inf {llu(t)-vll v S},

and similar estimates hold for the various derivatives of the error.
We shall combine the preceding remarks with approximation-theoretic

results. Denote by Hk(G) the space of functions q which with all derivatives D"0
of order lal at most k belong to L2(G). Such a space is complete with the norm

For appropriate functions v from an interval [0, T] into a normed space N with
norm I1" I1,,, we recall the norms

IoT l) lipI111,,) IIv(t)l]r d 1 <_- p < oo,

I111o<> ess sup {llv(t)ll 0 t_-< T}.

Our approximation result is based on an approximation assumption that is typical
of multivariate spline and finite element spaces 16].

PROPOSITION 6. Let V be a closed subspace of Ha(G) (as in 3), and
{Sh 0 < h < 1} a collection o" finite-dimensional subspaces o]’ V which satis]’y the
following approximation assumption: There are a constantMand an integer k >- 1
such that

(4.8) inf {11 11.’ sa} Mh-lllllm,
qg Vf-IHk(G), 0<h<l.

Let A and B be symmetric and monotone, A be V-coercive, and set

g sup {a(, )1/2 Ilwll’ 1},

K sup {b(, )1/2 IIllg’ 1}.

Let u C1([0, T], be a solution of Problem 1 with C eA for some e 0 and
assume that

u, u’ e L([0, T], H (G)), u" L ([0, T], H (G)).
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Then the approximate solution U defined by (4.3) with S Sh and initial data
chosen by M-projection (or L-projection) satisfies the estimate

(4.9) (llu(t)-U(t)ll2a+llu’(t)-U’(t)ll)l/2<=Ch k-l, 0<t<T,=

where C M{3g llulk    )+ (3Kb + Tg )llu’lkoo,. )+
Additional Remarks. The coercivity of A implies that (4.9) bounds the

Hi-norm of u(t)- U(t). Similar remarks apply to u’(t)- U’(t)when B is coercive.
The preceding proofs give estimates for problems of first order in time in the

form of Problem 2.
Proposition 6 applies directly to Examples 2 and 3 of 3. After an elementary

change of variable, Example 1 with r 0 is included. In the following section we
indicate how Example 4 can be perturbed into a "nearby" problem to which
Proposition 6 applies.

Since B is not required to be coercive, Proposition 6 gives error estimates for
problems like the following:

-Au(x, t)= F(x, t), x G, >-O,

D2t u(x, t) + Du(x, t) = O, xF1,

u(x,O)=u,(x), Dtu(x, 0)= u2(x),

u(x,t)=O, X6Fo, t=>O.

Such problems arise as linear approximations of gravity waves [11], [15].
The preceding techniques lead directly to energy estimates of error in the

approximation of equations with higher order elliptic coefficients. Such examples
were mentioned at the end of 3. For related results, see 1], [2], [3], 16], 18].

5. Perturbations. Three methods will be given for perturbing (1.1) into
"nearby" equations with desirable properties. We shall assume that A, B and C
are all monotone and that A and B are symmetric. None are necessarily coercive,
so the functions I1" Ila and I1" I1 are continuous seminorms on V and W, respec-
tively; denote the corresponding seminorm spaces by Va and Wb. The first two
methods are appropriate for the most common situation (e.g., Example 1) in
which A is strictly stronger than B and C. The first method corresponds to an
introduction of artificial viscosity for strong dissipation in the model (cf., Example
2) while the second method is suggestive of an introduction of artificial inertia.
The third method is a means of perturbing (1.1) into an equation to which we can
apply our approximation results of 4. It is appropriate for situations (e.g.,
Example 4 with a --0 or b 0) in which B is an elliptic operator and A is not
coercive.

Parabolic regularization. We modify (1.1) by replacing C with C+ cA, e > O.
If u is the corresponding solution of Problem 1 on [0, T] and we (u, u’), then
we have

(5.)

(0where L=L+e 0

Mw’(t) +Lw(t) (0, f(t)), 0 -<- t <-_ T,

A
If u is a solution of Problem 1 and w (u, u’) the
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corresponding solution of Problem 2, then

(5.2) M(w’(t)-w’(t))+L(w(t)-w(t))=(O, eAu’(t)), O<-t<-_ T,

and from (2.2) we obtain

I0Ilw(t)-w(t)ll/2 Re ((C+eA)(u’-u’), u’-u’)

22 Re (eAu’, u u2> <- (llu’ll/llu’-

Since C is monotone, it follows that

I0 I0
PoPosvro 7. I’ u’ e L([0, T], V), then

In particular, u u (u’ u’) in L([0, T], V) (respectively, L([0, T], W)) and
u’ is bounded in L([0, T], V).

From (5.1) and (2.3) one shows easily that Ilull., Ilu;Ik and
lu;lc(v, are bounded. The existence of a solution of (1.1)can be deduced from
existence for (5.1) and weak*-compactness of closed balls in L 12, Chap. 3.8].

When C 0 and A is coercive, Proposition 6 applies both to (1.1) and (5.1).
However, the strongly dissipative parabolic equation (5.1) may be more desirable
for numerical work [16, Chap. 7.3].

Sobolev regularizaion. In this perturbation of (1.1) we replace B with
B + eA, e > 0. Denoting by u a solution of the perturbed problem and letting
w (u, u;) as before, we have

(5. M ;( + ( (0, (, 0 T,

0) With u and w as before we have
0

whereM=M+e 0 A

(5.4) M(w’(t)-w’(t))+L(w(t)-w(t))=(O, eAu"(t)), ONtNT,

so (2.2) gives the estimate

IIw(t) w(t)ll+ellu’(t) 2u(t)ll 2e Re (Au", u u’)

(llu"llZ + Ilu’- u’ll), 0 < < T.

Setting H(t) Ito Ilu"ll + Ilu’- u’IIZ, we have

H’(t) u"(t)ll + n(t), O<_t<__T,
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and hence,

 llu"( )l12 dr < e Ilu"ll2a.H(t)< e t-

Our original estimate now gives, the following proposition.
PROPOSITION 8. If U" 6 L2([0, T], Va), then

2 2 e .]]2Ilu(t)-u(t)ll2/llu’(t)-u(t)llb/ellu’(t)-u(t)l{o<=e Ilu O<_t<_T.

In particular, u u (u’ u’) in L([0, T], Va) (respectively, L([0, T], Wb)) and
u’ is bounded in L([0, T], Va).

From (5.3) and (2.3)it follows that Ilu’ ll oo    and  llu;ll oo ,,o)are
bounded. We can obtain existence proofs from such a priori inequalities.

Discrete analogues of this method appear as Laplace-modified Galerkin
techniques [1], [2] for equation (1.1) with B I and first order equations, (1.1)
with B --0. In these numerical schemes, e is chosen as a first or second power of
the time increment.

A nonsingular.perturbation. For our final method we modify Problem 1 by
replacing A with A + eB. Letting u denote the corresponding solution and
w (u, u’) as before, we have

(5.5) Mw’(t) +Lw(t) (0, f(t)), 0 <- <- T,

B
L =L+ewhere M M+ e

0 B
tions of Problems 1 and 2, then we have

0B). If u and w are respective solu-

(5.6) M(w’(t)-w’(t))+L(w(t)-w(t))=(O, eBu(t)), O<-t<- T,

so Proposition 1 gives us the following.
PROPOSITION 9. If U and u are respective solutions of Problem 1 and the

indicated perturbed problem, then

2Ilu(t)- u(t)ll +llu’(t)- u(t)ll + ellu(t)- u(t)ll <- ere Ilull, O<- <= r.

The point of Proposition 9 is to perturb Example 4 into a form to which
Proposition 6 can be applied. An attempt to do so by introducing the unknown
v(t) e-X’u(t) leads to Problem 1 for v with A replaced by the coercive A +,2B
but at the expense of introducing a term 2)Au’(t), thus making Proposition 6
nonapplicable.

Similar techniques work for corresponding problems with a first order time
derivative. Such a problem arises with the equation

Dt(Au(x, t)) +D1 u(x, t) 0

for divergence-free Rossby waves [10, 7].
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